
Centrum für Informations- und
Sprachverarbeitung

Ludwig-Maximilians-Universität München

Masterarbeit

im Studiengang Computerlinguistik
Fakultät für Sprach- und Literaturwissenschaften

Rogue Dimensions
in Multilingual Embeddings

The Influence of Outliers on Similarity Search

Alina Fastowski
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Chapter 1

Introduction

Transformer-based language models have gained large popularity for solving numer-
ous NLP tasks over the last years. Despite reaching high performances, such models
are reported to exhibit rogue dimensions in the embeddings produced by them, i.e.
dimensions whose values significantly deviate from the norm (Kovaleva et al. [2021],
Timkey and van Schijndel [2021]).

The available research on this topic is mainly concerned with monolingual mod-
els, testing the effect of such outliers on tasks mostly requiring fine-tuning (see
chapter 3). There is however a lack of discussed multilingual models, as well as the
effects on tasks directly using such rogue textual representations. This thesis aims
to close this gap and perform research into this direction.

1.1 Aims of this work

This thesis investigates the multilingual XLM-R model [Conneau et al., 2020] on
the topic of rogue embedding dimensions. In order to specifically study the effects
of such dimensions on model performance, the general task of textual similarity
search was chosen. Because in such problems, the embeddings a model produces are
directly used for the task, similarity search was considered especially suitable for
studying the immediate effects of embedding outliers.

The following work aims to first identify the dimensions which are rogue for the
XLM-R model, after which they are systematically removed from the sentence em-
beddings used for the chosen Tatoeba similarity search task [Artetxe and Schwenk,
2019] to study their effects on performance. Observing an increase in accuracy
when discarding such dimensions, it is then searched for other outliers able to im-
prove similarity search performance. During this process, new outlier dimensions
are discovered, whose removal is likewise beneficial for the task, but are not defined
by magnitude as their main criterion.

1.2 Outline

After defining central topics essential for the further understanding of this thesis
in chapter 2, chapter 3 presents the previously done research on the topic of rogue
dimensions in language models. Chapter 4 then begins the investigations of outliers
in the XLM-R model, focusing on the task of similarity search. After gaining first
insights, chapter 5 analyzes the findings in more depth. Chapter 6 then returns
to the investigations, viewing rogue dimensions from a different perspective and
asking the question, what truly characterizes an outlier. The discussion of the thesis
is presented in chapter 7, which collects the main findings of this work as well as
possible future research directions.
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Chapter 2

Multilingual Language Models

As this thesis is concerned with multilingual embeddings, this chapter lays out the
key points associated with the topic for better further understanding. In the follow-
ing, the subject of word embeddings is reviewed through its most central aspects,
after which the Transformer architecture, which is the building block for the models
discussed throughout this work, is outlined. Combining the presented information,
embeddings are put into the context of neural network architectures.

2.1 Embeddings

Embeddings are representations of words in the form of mathematical vectors, each
vector having a certain number of dimensions. Each such dimension can be thought
of as encoding a certain e.g. semantic or syntactic feature, allowing words to be
represented in a shared vector space, placing words of similar meanings close to
each other.

2.1.1 Static vs. Contextualized

On the topic of word embeddings it needs to first be clearly distinguished between
static and contextualized representations.
Static embeddings assign one single meaning, i.e. one single static vector, to each
word. It therefore does not matter which context it occurs in and whether that may
give it an inherently different meaning. Examples for such are Word2Vec [Mikolov
et al., 2013] and GloVe [Pennington et al., 2014].
Contextualized embeddings on the other hand assign context-sensitive representa-
tions: depending on other words that surround a given word in e.g. an input sen-
tence, a certain embedding is generated. This is the case in state-of-the-art language
models such as e.g. BERT [Devlin et al., 2019], ELMo [Peters et al., 2018], the GPT
models [Radford and Narasimhan, 2018], and XLM-R [Conneau et al., 2020] among
others.

2.1.2 Mono- vs. Multilingual

As current language models largely employ contextualized representations over static
ones, there is another difference that exists among them: they can be mono- or
multilingual.
The difference between them majorly lies in the pre-training data they are exposed
to: while e.g. the original BERT is pre-trained using only English textual data1, the

1800M words from the BookCorpus [Zhu et al., 2015] and 2,500M words from the English
Wikipedia. [Devlin et al., 2019, p. 5]
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multilingual BERT instead sees 104 different languages in this process. The same
applies for the model investigated in this work, XLM-R2.

Because word embeddings capture the meaning of a word, multilingual repre-
sentations become comparable regardless of the language, since e.g. the meaning of
the English cat is the same as the German Katze. In the shared vector space, they
therefore end up close to each other.

Moreover it is important to note that, when passing textual input to a multilin-
gual model, it does not explicitly distinguish the language of the text by a marker of
some kind. Likewise there neither is any special mechanism enforcing translations
of words in different languages to have similar embeddings [Pires et al., 2019, p.
4997].

2.2 Model architecture

Having defined the embeddings investigated in this work, which are contextualized
and multilingual, this section outlines the underlying architecture of the language
models which produce them.

2.2.1 The Transformer

Figure 2.1: The Transformer architecture [Vaswani et al., 2017].

The Transformer, as first introduced by Vaswani et al. [2017], is a neural network
architecture following an encoder-decoder scheme, as depicted on the left- and right-
hand side of Figure 2.1, respectively. The key functionality of this architecture is the
attention mechanism, which “draws global dependencies between input and output”
[Vaswani et al., 2017, p. 2] and by that makes it possible to omit convolutions and
recurrence. The Transformer is also auto-regressive, meaning that for each current
timestep, the output of the respective previous one is additionally consumed.

2Further model and pre-training description see section 4.1.
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Looking at the architecture in more detail, both encoder and decoder consist
of N=6 identical layers. In the encoder, each such layer includes a multi-head self-
attention mechanism as well as a simple feed-forward layer. Both of these compo-
nents are followed by layer normalization, which is also called the LayerNorm.

The decoder is different in the way that there is an additional attention com-
ponent processing the previous output embeddings first, before its result is passed
on further where the current output of the encoder is infused. Both embeddings
passed into the encoder as well as to the decoder are also coupled to positional in-
formation, which is done by adding positional encodings. [Vaswani et al., 2017, p. 2f]

In recent years, most well-known language models were based on the Trans-
former. Important to note however is that not the entire architecture needs to be
used: for example, GPT uses only the decoder part, while BERT and XLM-R use
the encoder.

2.2.2 Neural nets and embeddings

Combining the above information, the big picture of generating word embeddings,
as is being done for the entirety of experiments for this work, is presented.

Since the aforementioned models are deep neural networks, they follow the
scheme of exhibiting a certain amount of model layers, each layer producing cer-
tain hidden states.

Figure 2.2: A simple neural network. [Riggs and Williams, 2020]

After a language model is pre-trained on (multi-)lingual data, using e.g. the
Transformer encoder in the case of XLM-R, it is able to encode given words as
contextualized embeddings. The process of obtaining them can be described as
follows: passing the model textual input, the words are processed by each hidden
layer. The hidden states in the hidden layers encode features of the words. Hence,
in the following, when referring to a model’s embeddings, it is referred to the hidden
states of the model layer in question.
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Chapter 3

Related Work

It is a well established fact that Language Models based on the Transformer ar-
chitecture [Vaswani et al., 2017] tend to develop one or multiple outlier dimensions
(Kovaleva et al. [2021], Timkey and van Schijndel [2021]). The following discusses
for which models exactly such a phenomenon has been detected and how, which side
effects such outliers may additionally cause, as well as possible ways to deal with
these rogue dimensions. Lastly, some of the current conjectures as to what may be
causing outliers in the first place are laid out.

3.1 Outliers in Language Models

Instead of directly examining the embeddings generated by a model, the search for
outliers can be started earlier in the architecture. For instance, Kovaleva et al.
[2021] have identified such phenomenon in the output LayerNorm components of
Transformer-encoder models (see also section 2.2.1). In the following, findings of
both monolingual and multilingual language models are outlined.

3.1.1 Monolingual Language Models

Considering mainly models from the BERT family (its base, medium and large ver-
sions, as well as RoBERTa [Liu et al., 2019]) [Devlin et al., 2019], Kovaleva et al.
[2021] establish abnormally high values in the respective LayerNorms’ scaling factors
and biases.
To locate outlier dimensions, the authors compute the mean and the standard de-
viation σ of these weights. Dimensions, in which both of the weights deviate 3σ or
more from the respective mean1 are considered outliers.

As an example, this method detects the dimensions 308 and 381 as outliers for
BERT-base. Since the embeddings generated by the model are directly influenced
by the output LayerNorm, the effects of its outliers are likewise directly visible in
the embeddings.
As can be seen in Figure 3.1, only dimension 308 is a consistent outlier across all
model layers, whereas 381 is most prominent in layers 7-10. The relationship be-
tween the magnitude of LayerNorm weights and the resulting embeddings shall be
further discussed in section 3.4.

Additionally to the models mentioned above, Kovaleva et al. [2021] also consider
other Transformer-based architectures like BART [Lewis et al., 2020], ELECTRA
[Clark et al., 2020], XLNet [Yang et al., 2019b] and GPT-2 [Radford et al., 2019].

1In the case of RoBERTa, 2σ is chosen as a boundary.
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Figure 3.1: Heatmap visualization of outliers 308 and 381 in the embeddings of
BERT-base [Kovaleva et al., 2021]. Generated with randomly sampled text from
WikiText [Merity et al., 2016].

Employing the same method of locating outliers in the output LayerNorm2, the
authors report the same outlier phenomenon being observed in these models, but
the outliers themselves aren’t specified further.

The results of Kovaleva et al. [2021]’s investigations concerning BERT and RoBERTa
are likewise supported by Puccetti et al. [2022], who replicate identical results using
the same technique for locating rogue dimensions as described above. For BERT-
base, again the dimensions 308 and 381 are reported as outliers, while for RoBERTa-
base they establish the dimensions 77 and 588.

3.1.2 Multilingual Language Models

While the aforementioned models were exclusively monolingual (English) ones, Ra-
jaee and Pilehvar [2022] turn their focus to the comparison of BERT with its mul-
tilingual version, mBERT [Devlin et al., 2019]. To identify outliers in these models’
embeddings, the same procedure as proposed by Kovaleva et al. [2021] by calculating
the mean and standard deviation is followed, however in this case the authors do
not apply this method to features of the LayerNorms, but instead directly to the
embeddings, i.e. the mean and standard deviation are calculated over the dimen-
sions of the embeddings, making each dimension differing from the mean by at least
3σ a rogue one.

Using articles from Wikipedia as textual input, the authors choose the languages
English, Spanish, Arabic, Turkish, Sundanese and Swahili to assess mBERT. Nat-
urally, English input is chosen for monolingual BERT. The representations are ob-
tained from the respective last layer of the models. Figure 3.2 depicts the average
representations reported by the authors.

While not providing exact dimensions, the outlier in the monolingual BERT em-
beddings appears to be dimension 308, which would coincide with the findings of
Kovaleva et al. [2021] and specifically Figure 3.1, which also shows that the em-
beddings of the last layer, which are used here, really only feature the outlier 308.

2For GPT-2, the dense output layer is considered instead, since in its architecture this is the
last component before the final output, instead of the LayerNorm [Kovaleva et al., 2021].
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Figure 3.2: Average embeddings of BERT and mBERT. The grey area marks the
space of 3σ [Rajaee and Pilehvar, 2022].

Most interestingly however, the multilingual counterpart mBERT does not produce
any rogue dimensions at all, which is in contrast to any other previously considered
models.
It may appear that the phenomenon of rogue dimensions is exclusive to monolingual
models, however this is not true as further proven by Rajaee and Pilehvar [2022],
who additionally perform the same experiments with another multilingual model,
XLM-R [Conneau et al., 2020]. While this model is not discussed in detail, the
key finding that it, in contrast to mBERT, does exhibit outlier dimensions in its
embeddings, is still made.

This section illustrated the observations of outliers in Transformer-based Language
Models that have been discovered up until now. However, the presence of outliers
in these models’ embedding spaces is often discussed alongside the phenomenon of
anisotropy, which additionally needs to be addressed in this context.

3.2 (An)Isotropy

3.2.1 Definition

A central feature of the embedding spaces, which is strongly associated with the
presence of outlier dimensions, is anisotropy, which is the opposite of isotropy. This
concept is built around the definition of cosine similarity, which measures the angle
between two vectors. For two vectors of dimension d, the angle between them, or
their similarity, is measured as follows:

cos(u,v) =
u · v
‖u‖‖v‖

=

∑d
i=1 uivi√∑d

i=1 (ui)2

√∑d
i=1 (vi)2

(3.1)

Equation (3.1) produces a value between 0 and 1, where a higher value indicates
higher similarity between the two vectors.
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Considering an embedding space, where words from a text corpus are encoded as
such, the concept of isotropy describes how similar these embeddings are to each
other on average:

“If word representations [...] were isotropic (i.e., directionally uniform), then
the average cosine similarity between uniformly randomly sampled words would
be 0. The closer this average is to 1, the more anisotropic the representations”
[Ethayarajh, 2019, p. 58].

Following this definition, an anisotropic space would indicate that randomly selected
word representations are highly similar to each other, which is naturally an undesired
property since it defies a major purpose of word embeddings themselves, making
them indistinctive from one another – regardless of whether they describe similar
concepts or completely opposite ones.

3.2.2 Anisotropy in Contextual Embeddings

Probing Language Models on the subject of anisotropy in their embeddings, Etha-
yarajh [2019] consider BERT, ELMo [Peters et al., 2018] and GPT-2 in their exper-
iments, in which they analyze the embeddings produced by each layer. Apart from
the hidden layers (2 in ELMo, 12 in BERT and GPT-2, respectively) the authors
additionally include the 0th layers, which are the input layers. These are not yet
contextualized. [Ethayarajh, 2019, p. 57]

Figure 3.3: Average cosine similarity between randomly sampled words for all layers
of BERT, ELMo and GPT-2 [Ethayarajh, 2019].

As can be concluded from Figure 3.3, all three models experience increasing
anisotropy the further the number of layers progresses. With the 0th layers being
non-contextualized, it can be assumed that “high anisotropy is inherent to, or least
a by-product of, the process of contextualization” [Ethayarajh, 2019, p. 59].
Clearly, the observed development of anisotropy is not exactly a linear progression:
for GPT-2, there are almost no changes until layer 9, and for BERT the second-to-
last layer demonstrates significantly higher anisotropy than the last layer. However,
the trend is still observable.
In either of the cases, the embeddings produced by the last layers are remarkably
more anisotropic than in the first ones, reaching around 0.65 at their peaks for BERT,
and even 1.0 in the last layer of GPT-2, making these embeddings “so anisotropic
that any two words have on average an almost perfect cosine similarity” [Ethayarajh,
2019, p. 58].
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3.2.3 The Role of Rogue Dimensions

After it has been shown by Ethayarajh [2019] that the embedding spaces produced
by contextualized language models like BERT and GPT-2 feature the phenomenon
of anisotropy in the first place, Timkey and van Schijndel [2021] perform an analysis
of what the cause of this may be.
They come to the conclusion that “the cosine similarity of any two tokens is domi-
nated by a small subset of rogue dimensions” [Timkey and van Schijndel, 2021, p.
4528], which is the reason why this topic is discussed in this work.

Employing BERT, RoBERTa, GPT-2 and XLNet as contextual models, the au-
thors select Word2Vec [Mikolov et al., 2013] and GloVe [Pennington et al., 2014]
as static ones for comparison. As for textual input, they construct a corpus of 85k
random tokens from the English Wikipedia.
Timkey and van Schijndel [2021]’s experiments have the purpose of identifying spe-
cific embedding dimensions that contribute to the overall anisotropy in a model’s
embedding space. In the process, they additionally calculate the proportion that
each of those dimensions contributed to the overall anisotropy. This is achieved as
follows:

Let the anisotropy in layer ` of model f be defined as the expected cosine sim-
ilarity between any two word representations. In the following, this is denoted as
Â(f`). This value can be estimated from a sample S of random pairs of tokens
{{x1, y1}, ..., {xn, yn}} of the chosen corpus. [Timkey and van Schijndel, 2021, p.
4528]
Let the cosine similarity between two embedding vectors u and v be defined as in
Equation (3.1). The function CCi(u, v) then expresses the contribution of a dimen-
sion i to the overall cosine similarity between u and v.

CCi(u, v) =
uivi
‖u‖‖v‖

(3.2)

CC(f i`) then defines the contribution of dimension i to the expected anisotropy in
layer `.

CC(f i`) =
1

n
·

∑
{xα,yα}∈S

CCi(f`(xα), f`(yα)) (3.3)

It then holds that Â(f`) =
∑d

i CC(f i`), d being the total number of dimensions.

[Timkey and van Schijndel, 2021, p. 4529]

Sampling 500k random token pairs from their constructed Wikipedia corpus, Timkey
and van Schijndel [2021] perform the described analysis on the six chosen models.
Reported are the top-3 dimensions contributing to anisotropy, each contribution
CC(f i`) normalized by Â(f`), the total expected anisotropy.
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Figure 3.4: Proportion of total expected cosine similarity, CC(f i`)/Â(f`), con-
tributed by each of the top 3 dimensions in the two most anisotropic layers of each
model [Timkey and van Schijndel, 2021, p. 4529].

It can for one be observed that the static models Word2Vec and GloVe produce
rather small values for Â(f`), making them more isotropic. E.g. for Word2Vec the
result would mean that any two randomly picked tokens have a cosine similarity of
around 0.13. The rest of the models however, which are contextual, all have (at
least!) two layers that produce highly anisotropic word representations. As the
authors themselves circle out, XLNet produces the most extreme result, in which
for layers 10 and 11 the expected cosine similarity is around 0.89 and 0.98 respec-
tively, and for each of these layers, a single dimension contributes over 99% to the
anisotropy [Timkey and van Schijndel, 2021, p. 4529].
Looking into the identified contributing dimensions further, the authors find that
these are indeed outlier dimensions present in the embedding spaces: “The dimen-
sions which drive anisotropy are centered far from the origin relative to
other dimensions” [Timkey and van Schijndel, 2021, p. 4529].

This finding is likewise supported by parallel research: for instance, in their
investigations of the rogue dimensions in BERT and RoBERTa, Luo et al. [2021]
find that by clipping the outliers, i.e. zeroing out the respective dimensions in the
embedding vectors, the embedding spaces become significantly less anisotropic: if
the expected cosine similarity in RoBERTa’s last layer was originally around 0.8,
after removing the outliers it drops to about 0.15 [Luo et al., 2021, p. 5317, see Fig.
6].

3.3 Removing Rogue Dimensions

3.3.1 Methods

The following describes the two most straightforward ways that can be used to make
adjustments to rogue dimensions.

Clipping As mentioned above, Luo et al. [2021] use “clipping”, i.e. zeroing out
the respective embedding dimensions, as a method to deal with outliers. The same
method is likewise applied by Kovaleva et al. [2021], who however apply the clipping
not directly to the word representations, but the identified outlier weights in the
LayerNorm component (see also section 3.1.1).
The approach of clipping targets the rogue dimensions only, without modifying the
rest of the respective word representation.
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Standardization Ethayarajh [2019] propose the method of standardization as a
post-processing step to account for rogue dimensions. For a corpus O with its word
representations x ∈ Rd, the mean vector µ ∈ Rd and the standard deviation for each
dimension σ ∈ Rd would be computed as follows:

µ =
1

|O|
·
∑
x∈O

x (3.4)

σ =

√
1

|O|
·
∑
x∈O

(x− µ)2 (3.5)

[Ethayarajh, 2019, p. 4533]

Applying standardization, the mean would be subtracted from each vector, and the
result divided by the standard deviation, i.e. each vector changes to x−µ

σ [Etha-
yarajh, 2019].
This method however modifies all dimensions of the word representations, not only
the rogue ones.

3.3.2 Effects on Model Performance

As established in section 3.2.3, one of the effects of rogue dimensions is the in-
creased anisotropy in the embedding spaces, and consequently, their removal makes
the spaces more isotropic, which is desirable. It is however also interesting to consider
what happens to model performance on downstream tasks, when these dimensions
are removed.

Kovaleva et al. [2021] investigate this by evaluating the BERT-base model, in
which they have identified the outlier dimensions 308 and 381 (see section 3.1.1),
on tasks from the GLUE benchmark [Wang et al., 2018]. The nine tasks focus on
single-sentence tasks (for sentence acceptability and sentiment), detection of seman-
tic similarity and Natural Language Inference [Wang et al., 2018, p. 353].

Figure 3.5: Performance of BERT-base on GLUE tasks with disabled outliers. †For
each of the non-outlier dimensions, their parameters are disabled one at a time. It
is then averaged over them. ‡For pairs of non-outlier dimensions, averages over 1000
runs are reported. [Kovaleva et al., 2021, p. 3397]

Kovaleva et al. [2021] evaluate the model performance using the full model (i.e.
without modifying anything, here: “Baseline”), and compare it with its perfor-
mances when different outliers are disabled. The two outliers 308 and 381 are
disabled both one at a time, as well as together. For additional comparison, non-
outlier dimensions are also tested.
As can be seen in Figure 3.5, the biggest drop in performance occurs when both
outliers are clipped, while disabling non-outlier dimensions does not have much of
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an effect altogether. Which single outlier causes the most damage is however not
universal across all tasks: for example, disabling 308 causes a big drop for STS-B
(-23.4), but a comparatively small one for CoLA (-2.16). For the outlier 381 it is
instead the opposite: its removal damages the performance on STS-B by only -4.4,
but CoLA is more significantly affected with a drop of -22.2 [Kovaleva et al., 2021,
p. 3397].
A similar drop in performance for GLUE tasks when the model’s outliers are re-
moved is reported for RoBERTa by [Puccetti et al., 2022, Appendix A].

Concluding this section, it can be established that disabling rogue dimensions
can have both positive and negative effects. On the one hand, their removal improves
the problem of anisotropy in the embedding spaces of language models, making them
more isotropic. On the other hand however, disabling them seems to impair model
performance on downstream tasks. Therefore one will have to decide based on the
use case whether to disable rogue dimensions or not.
Another possibility would be to find a way to pre-train the mentioned models such
that outlier dimensions don’t develop in the first place, however therefore the root
cause for their emergence needs to be known. The current theories on this matter
are discussed in the next section.

3.4 Possible causes for outliers

Outlier dimensions becoming apparent in the embeddings of language models is
merely a consequence of some other cause that is either rooted somewhere earlier
in the model, or even outside of it, e.g. in the data it has seen during pre-training.
Therefore, in order to find the reason for the emergence of rogue embedding dimen-
sions, the search should be started in earlier stages.

3.4.1 LayerNorm weights

Being the immediate component to output the embeddings in Transformer-encoder
models, it is logical to start the search there. As already discussed in section 3.1.1,
Kovaleva et al. [2021] find outliers in models’ LayerNorm scaling factors and biases.
Because the output-LayerNorm is directly connected to the resulting embeddings,
its outliers are consequently projected onto the word representations (see also Figure
3.1).
In a further experiment, Kovaleva et al. [2021] pre-train BERT-medium themselves
on the BookCorpus [Zhu et al., 2015] and monitor the development of the Layer-
Norm scaling factors and biases. They find that “both [...] begin to diverge from
their initialization values quite early [...] in the training process. At roughly the
same point, both training loss and evaluation perplexity begin to fall off” [Kovaleva
et al., 2021, p. 3399]. This is illustrated by the results in Figure 3.6, which feature
the outlier dimension 417 identified for BERT-medium.

An additional insight this result provides is that the development of the outlier
seems to help the model, since training loss drastically decreases at around the same
time the outlier emerges. This is also in line with the results discussed in section
3.3.2, which show how model performance drops when the outliers are clipped.

Therefore the outliers in the LayerNorm may mathematically be the cause for
outliers in the resulting embeddings, however in this case something must in turn
cause the LayerNorm outliers to emerge in the first place, as well. This consequently
may not be the original root cause of the phenomenon.
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Figure 3.6: Monitoring of BERT-medium pre-training. Graphics show the evaluation
perplexity, train loss, as well as both output-LayerNorm weights. The (orange)
highlighted dimension 417 is an identified outlier outside the 3σ range for BERT-
medium. [Kovaleva et al., 2021, p. 3400]

3.4.2 Positional Embeddings

Instead of the LayerNorm, Luo et al. [2021] have put their focus on the input layer of
BERT and RoBERTa, which consists of token and segment embeddings, as well as
positional embeddings [Luo et al., 2021, p. 5314]. Specifically the latter were found
to feature outliers in the same dimensions as the resulting word representations.

For instance, the authors replicate the outlier dimensions 77 and 588 in RoBERTa’s
embeddings. Coincidentally, dimension 588 was found to be nearly always the max-
imum element of each positional embedding3 [Luo et al., 2021, p. 5314].
In order to verify a causal relationship between outliers in the positional informa-
tion and the final word embeddings, the authors pre-train RoBERTa themselves
on the English Wikipedia Corpus, once including positional embeddings, and once
discarding them.
They find that while the model pre-trained with positional encodings still produces
the outlier phenomenon, the counterpart that doesn’t include positional information
does not exhibit rogue embedding dimensions. From this finding, Luo et al. [2021]
conclude a direct relationship of such outliers to positional embeddings [Luo et al.,
2021, p. 5316].

While this hypothesis is interesting and may be valid, there are a few points for
critique. For one, Luo et al. [2021] prove this behaviour only for the RoBERTa-base
model. It is hard to therefore conclude such causal relationship between positional
information and outlier dimensions for other Transformer-based models, which were
also proven to exhibit outliers (see e.g. section 3.1.1).
Secondly, this hypothesis is also questioned by Rajaee and Pilehvar [2022], who
have shown how BERT exhibits outlier dimensions, while mBERT does not (see
section 3.1.2). They therefore argue that Luo et al. [2021]’s hypothesis can not be
valid, “given that both multi- and monolingual spaces are constructed using the same
training procedure involving positional encodings” [Rajaee and Pilehvar, 2022, p. 4].

Although this theory may not be entirely proven to be true, it reports interesting
findings and was therefore considered important mentioning here.

3Specifically, this is the case from the 4th positional embedding through the final one.
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3.4.3 Token Frequency in Pre-Training Data

Taking a look outside model architectures, Puccetti et al. [2022] hypothesize pre-
training data to be related to the emerging problem: “Since [Language Models] rely
on statistical patterns of token co-occurrence, token frequency could be expected to
affect the learned representations” [Puccetti et al., 2022, p. 4].

As a first check, the authors examine the perfomance of the Masked Language
Modeling (MLM) task using BERT-base and RoBERTa-base. Using 104 sentences
from Wikipedia and randomly masking 15% of tokens, they analyze whether the
frequency distribution of tokens generated by the MLM changes, when outliers4 are
removed. In order to measure what a high- or low-frequency token is, they estimate5

the models’ pre-training data from a corpus similar to BERT’s pre-training corpus.

They find that the models with removed outliers generate more high-frequency
tokens than the non-modified models. This is the case for both BERT and RoBERTa.
For BERT specifically they find that removing its outliers makes the model produce
more punctuation, nouns, symbols and adpositions [Puccetti et al., 2022, p. 4].

Apart from examining generated tokens from the MLM, the authors addition-
ally consider whether there may be a correlation between the frequency of encoded
tokens and the outliers. In an experiment they establish “the correlation between
[the outliers’] magnitude and encoded token frequency [to be] much higher than for
random dimensions” [Puccetti et al., 2022, p. 4].

After finding a connection between token frequency and outliers, Puccetti et al.
[2022] aim to establish a causal relationship. For this, the authors pre-train three
BERT-medium versions, each with a different method of tokenization. Each is fo-
cused on a different application of the [SEP] token, which is employed for sentence
separation in BERT’s training data. While method (1) inserts the [SEP] token sim-
ply after each sentence, the other two disturb the linguistic structure by either (2)
applying the special token after each 256 tokens rather than each sentence, reducing
the overall amount of [SEP]s, or (3) replacing half of the high-frequency tokens with
low-frequency ones.

While all three models develop outliers, they behave slightly differently when
evaluated on the MNLI task [Williams et al., 2018a]. For the analysis, Puccetti
et al. [2022] evaluate using the full models, as well as with removing their respective
outliers. The most striking insight would have to be that for method (2), which
features less special tokens, the performance drops significantly when one of its out-
liers is disabled. The authors conclude that “since high frequency is one the factors
that characterizes special tokens, it must also contribute to their role in outliers”
[Puccetti et al., 2022, p. 7].

As a possible solution to the problem of emerging outliers, which Puccetti et al.
[2022] connect to the token frequency in the pre-training data, they propose finding
a pre-training scheme which better accounts for token frequency [Puccetti et al.,
2022, p. 8f].

4Analogous to previous research established to be 308 and 381 for BERT-base and 77 and 588

for RoBERTa. [Puccetti et al., 2022, p. 2]
5Their estimated corpus consists of the BookCorpus [Zhu et al., 2015] and a 2021 dump from

Wikipedia. [Puccetti et al., 2022, p. 4]
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3.4.4 Conclusion

The previously described insights discuss hypotheses that are both rooted inside the
model architecture, i.e. connecting the outlier problem to LayerNorm weights and
positional embeddings, and outside of it, finding the cause in the pre-training data.
In fact, both types of factors may apply. Because Puccetti et al. [2022], who propose
the pre-training data hypothesis, likewise find outliers in a non-Language Model, the
Vision Transformer [Dosovitskiy et al., 2020], this may be a clue that the root of the
problem may at least partially lie in the Transformer architecture itself.

Therefore, until further research is conducted to establish the definite cause of
outliers, the current way to think about it would be to accept multiple factors as
possible contributors to the problem.
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Chapter 4

Exploring XLM-R

This chapter investigates the multilingual model XLM-R, as well as two modified
versions of it, on the topic of rogue embedding dimensions. After defining their
formalities, the Tatoeba similarity search task is introduced, which itself includes
the dataset used for all following experiments.
Defining the methodology for obtaining and analyzing the embeddings, the received
results on outlier dimensions in the models are presented. Employing the Tatoeba
task, the models are then tested on their performance with regard to their outlier
dimensions.

4.1 Models

4.1.1 XLM-R

XLM-RoBERTa (XLM-R) is a Transformer-based multilingual language model in-
troduced by Conneau et al. [2020]. The model is influenced by both XLM [Lample
and Conneau, 2019] and RoBERTa [Liu et al., 2019] in different ways.

XLM The acronym of XLMs denotes the concept of cross-lingual language models.
In their paper, Lample and Conneau [2019] explore methods to pre-train XLMs by
using three different pre-training objectives:

• Causal Language Modeling (CLM) trains a Transformer to model the proba-
bility of a word wt in a sentence as P (wt|w1, ..., wt−1, θ).

• Masked Language Modeling (MLM) is identical to the method introduced by
Devlin et al. [2019], which in its essence replaces a fraction of tokens with an
artificial [MASK] token, making the model predict the original token. The
only difference is that Lample and Conneau [2019] use text streams of 256
tokens instead of sentences specifically.

• Translation Language Modeling (TLM), being an extension of MLM, applies
the masking to concatenated parallel sentences instead of monolingual text,
where words of both the source and target language sentence are masked. For
prediction, the model can then attend to words of both languages’ sentences.

[Lample and Conneau, 2019, p. 3]

The goal of Lample and Conneau [2019] is specifically to pre-train models with the
above objectives in a cross-lingual way. With CLM and MLM, this is achieved with
monolingual data, making the methods unsupervised, whereas the supervised TLM
requires parallel data. [Lample and Conneau, 2019, p. 2]
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For their experiments, the authors consider models pretrained on CLM only,
MLM only as well as MLM together with TLM, each relying on a 1024 hidden unit
Transformer architecture with 8 heads. [Lample and Conneau, 2019, p. 5]

Evaluating the resulting models on cross-lingual classification, supervised and
unsupervised machine translation, the authors find that their “fully unsupervised
MLM method sets a new state of the art on zero-shot cross-lingual classification”
[Lample and Conneau, 2019, p. 6], where using MLM together with TLM improves
the result even more. Testing machine translation performance with the MLM- and
CLM-only models, they are both observed to consistently outperform the previous
states of the art on both supervised and unsupervised MT tasks, where the MLM
produces the overall best results. [Lample and Conneau, 2019, p. 7]
The authors conclude CLM and MLM pre-training for cross-lingual language mod-
els to produce solid cross-lingual features. Additionally using parallel data, TLM is
likewise concluded to be highly beneficial. [Lample and Conneau, 2019, p. 8]

Resulting from this research, there are currently multiple different versions of XLM
available1: XLM-15, XLM-17 and XLM-100, the number indicating the number of
languages the models include. It is noted that XLM-17 and XLM-100 are pre-trained
on the MLM objective only. XLM-R can be seen as a refinement of XLM-100,
but with a significant change, for which the inspiration is drawn from RoBERTa.

RoBERTa The “Robustly optimized BERT approach” RoBERTa is, as the name
suggests, a version of BERT that is improved by a series of adjustments in the way
the model is pre-trained. While these measures include removing the next sentence
prediction objective and training the model longer, another significant change is the
increased amount of training data. [Liu et al., 2019]

This entry point for model improvement is leveraged by XLM-R: in comparison
to XLM-100, which it is in general based off of, XLM-R uses more and different pre-
training data. While XLM-100 is trained on text from Wikipedia, Conneau et al.
[2020] construct a new corpus of 2.5 TB of data for XLM-R, which is based on the
CommonCrawl2. By relying on 12 dumps from the CommonCrawl for all languages
except for English, the authors manage to majorly increase the size of the dataset
in comparison to XLM-100. This change is particularly beneficial for low-resource
languages. [Conneau et al., 2020, p. 3]

Figure 4.1: Amount of data in GB (log-scale) for the Wikipedia corpus used for
XLM-100 vs. the CommonCrawl corpus of XLM-R. [Conneau et al., 2020, p. 3]

Concluding the above definitions, XLM-R is therefore a mixture of XLM and RoBERTa:
following the architecture of XLM-100, Conneau et al. [2020] train a Transformer
with MLM using monolingual data only, but use the RoBERTa approach for its
improvement by infusing the model with a magnitude of more pre-training data.

1https://github.com/facebookresearch/XLM
2https://commoncrawl.org
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The success of XLM-R is measured by its perfomance on various tasks, showing
it to exceed on the multilingual field and even being competitive with monolin-
gual models. Specifically, it outperforms mBERT on cross-lingual benchmarks like
XNLI (+14.6% accuracy), MLQA (+13% F1 score) and NER (+2.4% F1 score).
The biggest improvements are seen on low-resource languages, which is a significant
achievement. [Conneau et al., 2020, p. 1]
Comparing XLM-R with monolingual models on the GLUE benchmark [Wang et al.,
2018], the authors find that while it is slightly worse than RoBERTa and XLNetlarge,
it manages to outperform BERTlarge by an average of 1.6% [Conneau et al., 2020,
p. 7].

The authors release two versions of the model, XLM-Rbase and XLM-R, which have
the following features:

layers hidden units attention heads parameters

XLM-Rbase 12 768 12 270M
XLM-R 24 1024 16 550M

In all experiments of this work, the smaller XLM-Rbase is used. For convenience, it
is in the following referred to as XLM-R.

4.1.2 X2S-MSE and X2S-CCA

Additionally to XLM-R itself, two closely related models constructed by Hämmerl
et al. [2022] are also included in the investigations on rogue embedding dimensions.

In order to improve on the quality of multilingual embeddings, the authors propose
the possibility of combining the advantages of both static and contextual repre-
sentations. For this, they first construct static embeddings that are multilingually
aligned: using Gupta and Jaggi [2021]’s X2Static, they extract static embeddings
from XLM-R for 40 languages. These are then multilingually aligned with the help
of unsupervised dictionaries and VecMap [Artetxe et al., 2018], resulting in the em-
beddings X2S-MA (X2Static-Multilingually-Aligned) [Hämmerl et al., 2022, p. 3].

Through continued pre-training, two modified XLM-R models are created. For
this, two loss alignment terms are considered, which are both employed by com-
paring the embeddings the original XLM-R produces with the ones constructed in
X2S-MA.
One way to do this is is to apply mean squared error (MSE) between these rep-
resentations. The second way is a correlation loss called “deep canonical correla-
tion analysis” (DCCA) [Andrew et al., 2013], which is based off of standard CCA
[Hotelling, 1936]. This method aims to linearly transform two representations such
as to maximize their correlation. DCCA replaces the linear transformations with
deep networks: Hämmerl et al. [2022] treat as the two deep networks the contex-
tualized XLM-R model and the static X2S-MA embeddings respectively. [Hämmerl
et al., 2022, p. 4]

This procedure results in two modified XLM-R models, each extended with +X2S-
MAMSE or +X2S-MADCCA of continued pre-training. For reasons of convenience,
the resulting extended models are shortened to X2S-MSE and X2S-CCA here.
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4.2 Tatoeba

For an analysis of the models’ embeddings with a focus on rogue dimensions, the
Tatoeba similarity search task [Artetxe and Schwenk, 2019] was considered espe-
cially suitable for experiments, since it is based directly on the embeddings a model
produces for the data. Tatoeba is composed of both a task and a dataset, which are
both introduced in the following.

4.2.1 Dataset

The Tatoeba dataset is derived from an open-source collection3 of high quality trans-
lated sentence pairs from English into more than 300 other languages, where the
number of available sentences varies per language.
As a pre-processing step for constructing their dataset from the collection, Artetxe
and Schwenk [2019] remove symbols that aren’t specific to any language, as well as
sentences shorter than three words or duplicates [Artetxe and Schwenk, 2019, p. 13].
The resulting dataset consists of up to 1000 English-aligned sentences per language,
which is available for 72 languages. The range can be increased to 86 languages by
limiting the available sentences to 500, and to 112 languages by allowing up to 100
translations only. [Artetxe and Schwenk, 2019, p. 13]

4.2.2 Task

Tatoeba denotes a multilingual similarity search task, for which its own dataset
can be used. The goal of the task evaluation is to pick the correct translations
between the sentences in each xx-en data pair. For the similarity search, the parallel
sentences per language pair can simply be shuffled. The original parallel data then
naturally contains the correct, desired pairings.
Similarity search is performed by computing the cosine similarity (as defined in Eq.
3.1) between the sentences, where the sentence embeddings are derived from the
model evaluated. For each sentence in language xx, its translation is considered to
be the English sentence that produces the highest value. [Artetxe and Schwenk,
2019, p. 7]

4.2.3 XTREME

For this work, the Tatoeba task is experimented with in the context of the Cross-
lingual Transfer Evaluation of Multilingual Encoders (XTREME)4 benchmark [Hu
et al., 2020], which was established for “evaluating the cross-lingual generalization
capabilities of multilingual representations” [Hu et al., 2020, p. 1].
XTREME evaluates models on their Tatoeba performance using 36 language pairs
(xx-en) from the original Tatoeba dataset, each pair containing up to 1000 parallel
sentences. The actual data is downloaded from the LASER (Language-Agnostic
Sentence Representations) repository5. Its details can be found in Table 4.1.

For evaluating specifically XLM-R on the task, the hidden states of its 8th layer are
considered for the embeddings. The evaluation metric is the accuracy score, i.e. the
percentage of correctly established translations.

3https://tatoeba.org/en/
4https://github.com/google-research/xtreme
5https://github.com/facebookresearch/LASER/tree/main/data/tatoeba/v1
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4.3 Outlier Identification

This section investigates the models XLM-R, X2S-CCA and X2S-MSE on the topic
of outlier embedding dimensions. Each model produces 768 embedding dimensions
in each of the 12 model layers6. The investigations are carried out in the context of
the Tatoeba dataset and task.
For all following experiments, the XLM-R model is instantiated from the Hugging-
face Transformers library [Wolf et al., 2020], whereas the X2S-MSE and X2S-CCA
checkpoints are obtained directly from the authors [Hämmerl et al., 2022].

4.3.1 Method

In order to extract the embeddings the models produce, they need to be presented
with textual input to encode. For this, the Tatoeba dataset as described in section
4.2 is employed. It encompasses 36 languages paired with their English translations,
each set of languages containing up to 1000 sentence pairs. The following languages
are included:

ISO language sentences
af Afrikaans 1000
ar Arabic 1000
bg Bulgarian 1000
bn Bengali 1000
de German 1000
el Greek 1000
es Spanish 1000
et Estonian 1000
eu Basque 1000
fa Farsi 1000
fi Finnish 1000
fr French 1000
he Hebrew 1000
hi Hindi 1000
hu Hungarian 1000
id Indonesian 1000
it Italian 1000
ja Japanese 1000

ISO language sentences
jv Javanese 205
ka Georgian 746
kk Kazakh 575
ko Korean 1000
ml Malayalam 687
mr Marathi 1000
nl Dutch 1000
pt Portuguese 1000
ru Russian 1000
sw Swahili 390
ta Tamil 307
te Telugu 234
th Thai 548
tl Tagalog 1000
tr Turkish 1000
ur Urdu 1000
vi Vietnamese 1000
zh Mandarin 1000

Table 4.1: Languages with their ISO-codes and number of available parallel sentences
used for Tatoeba evaluation in XTREME.

The general procedure of acquiring a model’s embeddings is to pass it textual in-
put, and extract the hidden states of a specific model layer. The hidden states
denote token embeddings of the passed input. In the context of the Tatoeba task,
these embeddings are further processed into sentence embeddings, which are then
examined for dimensions with exceptionally high magnitudes: this is given if a di-
mension’s value exceeds the embeddings’ mean by at least 3 standard deviations in
either direction.

4.3.2 Sentence Embeddings

In order to obtain representations that describe entire sentences rather than sin-
gle tokens, the mean pooling operation is applied. As also used in Sentence-BERT
[Reimers and Gurevych, 2019], which focuses on deriving specifically sentence em-
beddings, mean-pooling simply computes the mean over a sentence’s token repre-
sentations. The result is a representation describing the entire sentence.

6See table with XLM-Rbase architecture in 4.1.1
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4.3.3 Outliers in XLM-R

The goal of the primary examination is to establish whether specifically XLM-R
produces rogue embedding dimensions in the first place, and if so, which dimensions
are affected. In order to establish this, the sentences of all 36 languages of the
Tatoeba dataset are encoded by the model, after which one average embedding over
all sentences is calculated.

Figure 4.2: Average embeddings of XLM-R over all 12 model layers.

As shown in Figure 4.2, XLM-R produces outlier dimensions in each of the 12
layers. In order to formalize which dimension exactly to consider a rogue one, the
method established in previous research [Kovaleva et al., 2021] is applied (see also
section 3.1.1): the mean and standard deviation σ of all embedding dimensions are
computed. A dimension is then considered to be an outlier if it exceeds
the mean by 3σ or more in either direction. The grey area marks the space of
the mean plus 3σ in the positive and negative direction in each layer respectively.
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Following this formalism, the following outlier dimensions are established in XLM-R:

layer outlier

1 89, 239, 306, 588, 720

2 306, 588, 720

3 306, 588

4 145, 239, 306, 588, 720

5 145, 184, 239, 306, 588

6 184, 239, 306, 588, 720

layer outlier

7 180, 184, 239, 306, 588

8 180, 239, 306, 588

9 306, 588, 741

10 306, 588, 741

11 306, 588, 741

12 588, 741

Table 4.2: Established outlier dimensions for all layers of XLM-R following the 3σ
rule.

It is worth to note that the two most obvious outliers are dimensions 588 and 741,
which are visible in Figure 4.2 without additional formalisms. Interestingly, 588 is
most prominent from layers 1 through 11 and drastically reduces in layer 12, whereas
741 only begins developing from layer 9 onwards and reaches its peak in the last
layer.

4.3.4 Outliers in X2S-MSE and -CCA

An analogous analysis is performed with the models X2S-MSE and X2S-CCA. The
following rogue dimensions are determined following the 3σ rule.

layer outlier

1 12, 89, 184, 239, 306, 588, 720

2 184, 588, 720

3 588, 720

4 184, 588, 720

5 184, 588, 720

6 502, 588, 720

7 180, 184, 588

8 180, 588

9 180, 404, 588, 720, 741

10 588, 741

11 588, 741

12 588, 741

(a) X2S-MSE

layer outlier

1 12, 152, 267, 306, 588, 720

2 306, 588, 720

3 306, 588, 720

4 145, 184, 239, 306, 588, 720

5 145, 184, 239, 306, 588

6 145, 184, 306, 588

7 184, 239, 306, 588

8 184, 239, 306, 588

9 306, 588, 741

10 306, 588, 741

11 306, 588, 741

12 12, 588, 741

(b) X2S-CCA

Table 4.3: Established outlier dimensions for all layers of X2S-MSE and X2S-CCA
following the 3σ rule.

A few observations can be made here: for one, most importantly, both models’
most prominent outliers are again 588 and 741. This means that the continued pre-
training as described in 4.1.2 did not influence the emergence of these two major
outliers.
Apart from this it is also observed that the points of outlier emergence are highly
similar to the pattern in XLM-R, where 588 exhibits the highest magnitude from
the beginning layer and is maintained until almost the end, and 741 only emerges
starting from layer 9. This is very similar in the two extended models, where 588

is the most outstanding until layer 9 in both X2S-MSE and -CCA, starting from
where the 741 outlier emerges and becomes more prominent than 5887.

The last notable observation concerns the rest of the outlier dimensions estab-
lished with the 3σ rule. Although being not as significant outliers, many of the di-
mensions established for XLM-R are again observed in X2S-MSE and -CCA. These
include for example the dimensions 180, 184, 239, 306 and 720.

7Note: this is not intended to be deduced from Table 4.3.
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4.3.5 Summary

This section established rogue dimensions for all layers of XLM-R as well as two
extensions of it, X2S-MSE and X2S-CCA. As the method for identifying outliers,
the “3σ rule” was employed, which has also established itself in previous research in
the field of rogue dimensions (see chapter 3).
As the two most significant outliers, dimensions 588 and 741 are observed,
by far exceeding the magnitudes of any other dimension. It is worth noting that
588 is present from layer 1 onwards, whereas 741 emerges only starting from layer
9, where it begins “outgrowing” 588. This is the case for all three models.
Apart from the two major outliers, a number of other dimensions is marked
as being rogue, see Tables 4.2 and 4.3. With respect to 588 and 741 they may not
look as significant, but compared to the average embedding value they do deviate
far enough to fall out of the norm. Interestingly, the same “less significant” outliers
in XLM-R are likewise observed in its extensions X2S-MSE and -CCA.
This indicates that neither the big outliers of XLM-R nor its less outstanding ones
were affected by the continued pre-training procedure which extended the model to
X2S-MSE and -CCA, respectively. Each of XLM-R’s outliers still emerged in
either of the two extended models.

After having established the models’ rogue dimensions, the next question that
arises is what role they may play in the representative quality of the embeddings.
For investigations on this matter, they are examined in the context of the Tatoeba
similarity search task.

4.4 Outliers’ impact on similarity search

As explained in section 4.2, the Tatoeba similarity search task utilizes the cosine
similarity measure to match the correct translations in an xx-en collection of sen-
tences based on their sentence embeddings.
In the following it is investigated to what extent rogue embedding dimensions influ-
ence the Tatoeba task performance of the examined language models.

4.4.1 Baseline Tatoeba performance

The unmodified models’ results on Tatoeba are referred to as the baseline task
performances. To obtain them, each model is tested on the task in the context of
the XTREME benchmark, where specifically layer 8 embeddings are used.
The evaluation is done per each of the available 36 languages, averaging over which
determines the overall accuracy of the model. The following scores are obtained:

Model af ar bg bn de el es et eu fa fi fr

XLM-R 51.6 35.8 66.9 28.7 88.4 51.6 71.0 44.2 26.1 64.4 63.9 72.5

MSE 10.9 3.9 17.1 2.4 42.5 5.1 15.2 7.9 7.4 10.5 12.7 22.2

CCA 74.1 57.0 82.1 54.9 95.4 72.5 88.6 75.2 52.5 79.9 84.3 84.3

he hi hu id it ja jv ka kk ko ml mr

XLM-R 51.7 50.5 58.7 68.6 64.7 52.8 15.1 37.1 33.2 50.1 54.7 38.0

MSE 10.1 9.0 13.4 14.3 11.5 10.0 5.4 4.9 6.1 10.5 4.5 5.3

CCA 71.7 70.1 80.2 86.4 82.3 74.0 22.9 63.8 62.3 63.2 25.5 34.9

nl pt ru sw ta te th tl tr ur vi zh

XLM-R 76.8 76.6 69.8 15.6 25.1 30.8 34.7 29.7 54.9 31.1 67.7 59.4

MSE 17.8 19.7 12.5 4.1 1.9 3.4 1.6 6.8 6.8 2.5 15.6 6.1

CCA 89.3 90.4 85.6 23.8 56.3 59.4 68.4 45.1 78.0 45.9 84.4 85.2

XLM-R X2S-MSE X2S-CCA

50.35 10.05 68.06

Table 4.4: Baseline Tatoeba performances of XLM-R, X2S-MSE and X2S-CCA.
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Table 4.4 shows how the X2S-CCA model consistently outperforms the other two
with an average accuracy of 68.06%. It is followed by the original XLM-R model
with a performance of 50.35%, whereas the X2S-MSE model evaluates to a signifi-
cantly worse score at 10.05%.

It should be pointed out here that these performances on sentence similarity
search were carried out with the original models’ embeddings, which do include out-
lier dimensions as established before. Specifically, the embeddings that are produced
by the 8th layer of each model were used for the results in Table 4.4.
It is in the following examined whether their removal is able to improve or worsen
the task performance on Tatoeba.

4.4.2 Removing outliers

The most straightforward method to remove rogue dimensions from the embeddings
is to simply zero them out, i.e. in each sentence representation, replace the value in
the outlier dimension with a zero (see also 3.3.1). In this section, this is done for
each outlier by letting the models encode the sentences, then removing one outlier
at a time from the resulting embeddings, after which the modified embeddings are
used for the task.
The goal of this series of experiments is to understand whether the removal of a
rogue dimension from the embeddings influences the similarity search performance
in any way.

Since the task evaluation in XTREME uses the 8th layer of each model for the em-
beddings, the rogue dimensions established for specifically the 8th layers are zeroed
out here. Referring to the outliers identified in tables 4.2 and 4.3, the following
dimensions are tested:

model layer 8 outliers

XLM-R 180, 239, 306, 588
X2S-MSE 180, 588
X2S-CCA 184, 239, 306, 588

Table 4.5: Layer 8 outliers of all three models.

As dimension 588 was found to be the most outstanding one in layer 8, it is the first
to be tested by removal. The following accuracy scores are achieved by the models
when clipping 588 from each of their embeddings:

Model af ar bg bn de el es et eu fa fi fr

XLM-R 51.2 35.8 67.6 28.5 88.9 52.7 70.9 48.4 31.7 66.2 66.5 73.1

MSE 11.8 4.5 16.9 2.0 42.8 5.0 16.0 8.2 8.2 11.0 14.5 23.2

CCA 73.9 59.7 82.7 55.8 95.5 74.5 87.9 74.3 52.1 81.1 84.2 85.4

he hi hu id it ja jv ka kk ko ml mr

XLM-R 54.8 48.5 64.0 71.6 65.6 57.0 15.6 42.6 41.0 54.9 59.1 41.9

MSE 11.8 9.2 14.2 15.6 12.0 11.1 6.3 5.4 6.3 11.4 5.7 6.2

CCA 71.3 75.4 82.0 87.2 82.4 75.8 26.3 65.8 62.4 67.9 63.2 52.6

nl pt ru sw ta te th tl tr ur vi zh

XLM-R 78.7 78.4 70.9 16.7 27.7 35.9 41.1 31.5 61.3 35.8 70.3 61.4

MSE 19.2 20.1 13.3 3.8 2.6 4.3 2.6 7.0 7.8 2.9 17.3 7.6

CCA 89.3 90.5 86.3 26.1 63.9 70.9 74.6 45.2 78.7 57.9 86.6 85.1

XLM-R X2S-MSE X2S-CCA

52.99 10.77 71.52

(+2.64) (+0.72) (+3.46)

Table 4.6: Tatoeba performances of the models, 588 removed.
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In Table 4.6, green values indicate an increased score for the particular lan-
guage, red values denote a decreased score, and black ones mean that the score has
not changed.

The major observation in this experiment is the consistent increase in task per-
formance after removing the rogue dimension 588: for nearly all languages, the
similarity search performs better without the outlier. In some extreme cases even,
the score increases an especially big amount, e.g. for the X2S-CCA model, the accu-
racy for Malayalam (ml) jumps from 25.5 to 63.2, and for Marathi (mr) it increases
from 34.9 to 52.6, which are improvements of +37.7 and +17.7, respectively. In some
cases, the performance worsens when the outlier is removed. However the decrease
is not particularly big: on average, it lies at around -0.43.

Overall the clipping of the major outlier 588 benefits all three models. On aver-
age, their performances rise by +2.64, +0.72 and +3.46, respectively. The biggest
difference is seen in XLM-R and X2S-CCA, whereas the performance of X2S-MSE
does not improve much. This may be the case, because the baseline performance
of the model was rather low already. Its embeddings may therefore be flawed in
another way that makes it perform worse on tasks like similarity search. Therefore,
zeroing out the rogue 588 dimension has improved its accuracy score by a bit, but
it could not drastically rise its task performance.

Moving forward, the rest of the established rogue dimensions (as shown in Table
4.5) are likewise zeroed out for testing on Tatoeba. For clarification, each run
has only a single clipped outlier, i.e. the following experiments do not additionally
remove outliers after already having zeroed out 588 – each new outlier is removed
from the original, unmodified sentence embeddings. This shows each outlier’s effect
in isolation.

outlier XLM-R X2S-MSE X2S-CCA
180 50.57 (+0.22) 10.1 (+0.05) –
184 – – 68.15 (+0.09)
239 51.11 (+0.76) – 68.59 (+0.53)
306 50.59 (+0.24) – 68.18 (+0.12)

Table 4.7: Tatoeba performances of the models, other outliers removed.

While the other dimensions, which were likewise considered rogue by the 3σ rule
before, also cause an increase in task performance, the improvements are compara-
tively small in contrast to the effect of removing 588.
It is however notable how there is no case in which the removal of an outlier di-
mension causes a decrease in accuracy: whether the gain is small or big, removing
a rogue dimension seems to be beneficial for similarity search either way.

4.4.3 Rescaling outliers

As an alternative method for outlier elimination, the idea of rescaling is proposed
in this section. This suggestion stems from the idea that the outliers may not be
inherently harmful dimensions, i.e. the features they respectively encode may in
reality be important to the representational power of the embeddings. Possibly the
dimensions which ended up rogue are simply scaled wrong.

In order to test this theory, the same outliers from Table 4.5 are rescaled in a
way that brings them closer to zero, instead of zeroing them out entirely as in the
previous section. As a starting point, it is experimented with the biggest outlier 588
first to find a reasonable scaling factor.
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To estimate by which factor to rescale a dimension to reduce its magnitude, it
is sensible to base this value roughly around the value itself: i.e. if a dimension’s
value on average lies at around 8, rescaling it by 1⁄8 (meaning, dividing it by itself)
would reduce the value to 1. It can then be experimented with further factors that
rescale the dimension to be closer to zero, or on the other hand make the rescaling
less drastic.

Applying this method to the outlier dimension 588, the factors are based around
its average value, which lies around -15. This is established through the average
embeddings previously calculated in section 4.3.3, which computed one mean em-
bedding averaged over all sentence representations for each layer. Note that currently
specifically layer 8 is investigated.
In the following, different factors around the value 15 are tested. In detail, the rescal-
ing is applied to the rogue dimension 588, and the resulting modified embeddings
are used for testing on the Tatoeba task.

scaling factor performance
none 50.35
1⁄5 52.91
1⁄10 52.96
1⁄15 53.02
1⁄20 52.99

zero out 52.99

Table 4.8: Tatoeba scores for different scaling factors, outlier 588.

Table 4.8 shows the results of different scaling factors for 588, sorted from reducing
the outlier’s magnitude the least (“none”) to reducing it the most (“zero out”). The
performance of the factor “none” corresponds to the model’s baseline performance
with unmodified embeddings.

It can be seen that reducing the outlier by mid-range factors like 1⁄5 and 1⁄10
already shows significant improvement in model performance, with gains of +2.56
and +2.61. The best result however is achieved with the factor 1⁄15, which even
produces a slightly better result than the method of zeroing the outlier out. By
bringing the outlier, which has its average value at around -15, even closer to zero
by using the factor 1⁄20, no further improvement can be achieved. In fact, the exact
same result is produced as with zeroing out.

It is deduced from the results that a reasonable scaling factor is to divide the
rogue dimension in question by its average value. In the case of the biggest outlier
588, this is shown to be a good choice. Consecutively, this hypothesis is tested for
the other outlier dimensions of XLM-R8.

factor performance
none 50.35
1⁄avg 50.63

zero out 50.57

(a) 180

factor performance
none 50.35
1⁄avg 51.01

zero out 51.11

(b) 239

factor performance
none 50.35
1⁄avg 50.55

zero out 50.59

(c) 306

Table 4.9: Tatoeba scores after rescaling, other XLM-R outliers.

XLM-R’s remaining layer 8 outliers 180, 239 and 306 are each scaled down by their
respective average values. For example, the average value of dimension 239 lies at
around -2. Its scaling factor 1⁄avg therefore corresponds to 1⁄2.

8The X2S-CCA and -MSE models are omitted here.
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As can be seen in the results of Table 4.9, the hypothesis that rescaling a dimen-
sion by its average value may be a better choice than zeroing the dimension out does
not hold by default. In the cases of 588 and 180, rescaling produced a slightly better
result on Tatoeba. For 239 and 306 however, zeroing out was the better choice.

It is important to note that this section does not perform an exhaustive search
for scaling factors. It may therefore be the case that for each of the dimensions there
exists an optimal factor that is not taken into account here.

The overall takeaway from these experiments is that reducing the magnitude
of an outlier, whether by rescaling or zeroing it out entirely, is beneficial for the
similarity search in either case. In some cases, if a good scaling factor is found,
rescaling can be a better option. However the advantage of rescaling compared to
zeroing out is minimal in these instances (+0.03 for 588, +0.06 for 180).

4.4.4 Testing random dimensions

In order to verify that the above results, i.e. the performance improvements after
removing or rescaling the outliers, are not just a coincidence that may be caused by
removing any other dimension, a number of random dimensions is considered as a
counter-check.
For this, 10 numbers in the range of [0, 768] are randomly generated, making sure
that none of them correspond to outlier dimensions in neither model. The counter-
check removes (i.e. zeroes out) each of the random dimensions for each model, after
which the modified embeddings are tested on Tatoeba.

model 547 64 48 13 397

XLM-R -0.01 -0.02 +0.00 -0.01 +0.04
CCA +0.01 -0.01 +0.02 -0.06 -0.02
MSE +0.01 +0.02 +0.00 +0.02 +0.01

model 209 358 97 567 702

XLM-R -0.02 -0.01 -0.01 +0.00 -0.01
CCA +0.01 +0.02 +0.01 -0.02 +0.00
MSE +0.02 +0.00 +0.00 +0.00 -0.01

Table 4.10: Removing random dimensions for all three models, scores on Tatoeba.

The above table shows the in-/decrease in Tatoeba task performance for each
model, after the respective dimension is zeroed out. It can be clearly seen how in
none of the overall 30 runs the score increases nearly as much as it does when real
outliers are removed. In several cases, there is even a decrease in performance, which
was not seen after removing any of the rogue dimensions.

The important insight here is that, whether it is an increase or a decrease in score,
the effects of removing these dimensions are practically non-existent. This supports
the results seen with outlier dimensions before in the sense that those results are no
coincidence: a visible improvement in similarity search can be achieved by reducing
rogue dimensions, it cannot be achieved with random, non-rogue ones.

4.5 Observations

This chapter has proven the presence of rogue dimensions in the embeddings that
are produced by XLM-R, as well as its two expansions X2S-MSE and X2S-CCA.
The following key observations are made during the outliers’ examination.
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Analyzing embeddings across all 12 model layers, it is observed how especially
the two major outliers, dimensions 588 and 741, develop. Figure 4.2 illustrates
clearly how 588 dominates most layers, but 741 emerges later on and becomes the
most prominent by the time the final layer is reached. A similar phenomenon is the
case for the two other models.
It can therefore not clearly be said, which dimension(s) is/are the models’ biggest
outlier – it highly depends on the layer in question.

The 3σ rule used for identifying rogue dimensions establishes a number of addi-
tional dimensions beside the two major ones. When removing each of the outliers,
whether through zeroing out or rescaling, the performance on the Tatoeba similarity
search improves. The best improvement is seen after removing the biggest outlier of
layer 8, dimension 588. All smaller outliers cause smaller score improvements.
It needs to be further investigated whether there is a direct relationship between the
magnitude of an outlier and the effect of its removal.

In previous research, see especially section 3.3.2, it was shown how removing
a language model’s outliers causes big drops in performance on downstream tasks.
The same could have been expected to be the case for the Tatoeba similarity search
task, however the opposite is the case: removing any of the identified outliers causes
an improvement in task performance.
This opens up the question, why in specifically this task the presence of such outlier
dimensions seems to be harmful.
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Chapter 5

Detailed Analysis

The previous chapter explored the chosen models on the topic of rogue dimensions in
a generalized way in order to gain first insights about outliers in their embeddings.
This, for one, meant to average over all available languages’ sentence representa-
tions and work with one single embedding per model layer. Secondly, regarding the
evaluations on the Tatoeba task, only the average score improvements are focused
on. Although, e.g. for 588, the accuracy scores were presented for each language
(see Table 4.6), the results were still not analyzed in detail.

Since this work is concerned with a multilingual model, as opposed to previous
research which focused largely on monolingual ones, it is important to pay atten-
tion to this factor and include the multilinguality into the analysis. This is in the
following done for the outliers themselves, as well as for the models’ performance
on similarity search. In this chapter, only XLM-R is considered, specifically the
embeddings of its 8th layer since they are tied to the results on Tatoeba.

5.1 Lower level embeddings

To establish the models’ rogue dimensions, chapter 4 examined one single repre-
sentation per layer, which is a result of averaging over all sentence representations,
encompassing 36 different languages and 31,692 sentences in total. This section now
revisits the investigation of outlier dimensions by decomposing these generalized em-
beddings into “lower levels”: the language embeddings, which are a product of their
sentence embeddings, and the sentence embeddings themselves.

Figure 5.1: The averaging process leading to the generalized embeddings.

33



The reason for returning to these components is that some information may
have been lost in the process of averaging: as an extreme example, dimension 588

in embeddings of language A may lie at +35, whereas language B may lie at -5.
Averaging over the two languages would produce the result that the outlier 588 lies
at the value of +15, but this would be a very inaccurate statement regarding single
languages.

5.1.1 Language level

Stepping one level lower from the generalized embedding leads to language level
representations, as also visualized in Figure 5.1. For each language, these are the
product of averaging over each such language’s sentence representations.

Returning to them allows one to examine language-specific embeddings on the
topic of outliers, rather than one generalized embedding representing all languages.

For reference, the following rogue dimensions were established for the generalized
layer 8 embedding of XLM-R:

180 239 306 588
value 1.87 -2.06 3.07 -15.16

To now analyze the language embeddings, the same procedure as in chapter
4 is applied, establishing rogue dimensions through the 3σ rule. For each of the
found outliers, it is examined how pronounced they are in the respective languages
magnitude-wise and whether any big differences can be observed. For this experi-
ment, only XLM-R is considered, specifically its layer 8 embeddings.

Figure 5.2: Rogue dimension values per language embedding (XLM-R layer 8).
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The above figure features all dimensions that were established to be outliers by any
of the language embeddings. While including all outliers that were found for XLM-
R in the previous chapter in a generalized manner (180, 239, 306 and 588), the
results here feature an additional outlier 184, which however holds for only 12 of
the 36 languages. This is also an interesting observation concerning the rest of the
outliers: 306 and 588 are both outliers in all of the 36 languages. However 239 and
180 are considered rogue in the embeddings of only 29 and 27 languages respectively.

Concerning the actual magnitudes of the outliers in each language, it can be seen
that none of them deviate far from their averaged value of the generalized embed-
ding: for example, the generalized embedding reached -15.16 in its dimension 588 –
looking at the language representations that make up this generalized embedding,
none of them deviate extremely far from this average, as e.g. suspected in the in-
troduction of this section.
Formalizing this observation, the ranges1 spanned by the language-level outlier val-
ues are also representative of this finding:

180 184 239 306 588
range 0.38 0.61 1.09 1.67 1.56

The wider the value-range exhibited by the languages, the bigger the chance is
that a language itself influences how pronounced an outlier becomes. Here, this is
the case to some extent, as certain languages like ka tend to produce the highest
values, whereas others like de tend to settle in the lower range. The effect should
however be studied in more detail to draw definite conclusions.

Following this analysis, it can be concluded that the rogue dimensions established
for XLM-R in chapter 4 are overall stable observations. As it was found, there are no
languages whose outliers differ extremely from the outlier values of the generalized
embedding. Therefore in this sense, no crucial information was lost in the
process of averaging.
It is also found that there are very stable outliers like 306 and 588, since they are
found as outliers in all of the considered languages, and less stable ones like 180

and 239, which are found to be rogue in only a part of the languages. Therefore,
the previously established dimensions 306 and 588 can be considered as universal
outliers of XLM-R, at least in its 8th layer.

5.1.2 Sentence level

An even more fine-grained way of going about the analysis is to examine outliers per
sentence in each language. This is done to understand whether big outlier values
may be caused by specific sentences.
For insights on this matter, the rogue dimensions 588 and 306 are chosen, since
firstly, they were established to be consistent outliers across all languages in the
previous section, and secondly, exhibit the largest average values and therefore may
return interesting results.

In detail, this is investigated the following way: the sentence embeddings of all
languages are considered. For each language, the values of their sentence embeddings
in the respective dimensions are plotted, such that the x-axis denotes each single
sentence, while the y-axis denotes their embedding values in the respective outlier
dimension. While the results are examined for all languages, the plots of only two

1In this context, range denotes the difference between the biggest and smallest value of the
distribution.
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languages per outlier are shown here due to space reasons. The languages chosen
for visualization are the ones that produced the lowest and highest values in the
language embeddings in the previous section, see Figure 5.2. These are it and ja

for 306, and te and ka for 588.

Figure 5.3: Rogue dimension values for sentence embeddings of chosen languages
(XLM-R layer 8).

Figure 5.3 visualizes the distribution of outlier values in the chosen languages’
sentence embeddings. It is noted that te and ka exhibit less instances, because
the Tatoeba dataset provides less sentences for these languages (further specified in
Table 4.1).
As can be seen, single sentences likewise exhibit varying values in the outlier di-
mensions. To place these results into the general context of outlier magnitudes, the
following is a reference for their values in the generalized embeddings, and the lower
level of language embeddings:

generalized embedding values

306 588
3.07 -15.16

language embedding values

306
it 2.40
ja 4.07

588
te -15.97
ka -14.41

Since for language embeddings, the two languages were chosen which exhibited
the lowest and highest values respectively, the table of language embedding values
can also be seen as the minimum and maximum values produced in those rogue
dimensions on a language level. The following now formalizes the above plots, in-
cluding the smallest and biggest values exhibited by sentence embeddings:

sentence embedding values

306
it (1.52 / 3.30)
ja (2.11 / 5.43)

588
te (-18.99 / -12.81)
ka (-17.45 / -10.88)
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Having collected all of the results above, it can now be seen how accurate the
generalized embeddings established in the previous chapter are.

Taking for instance 306, its value after all levels of averaging results to 3.07.
Going one step back to language embeddings, the lowest value produced by a lan-
guage is 2.40, and the highest is 4.07. Now stepping even one level further down
to sentence embeddings, there is a sentence that produced the value 1.52 in this
dimension, while another reached 5.43.

To summarize, this means that the values reported in the generalized em-
bedding’s rogue dimensions are truly just an average of all its lower level
components: the magnitude of 588 being reported to lie at -15.16 does not mean
that all sentence embeddings reach about this value in the outlier dimensions: they
reach anything between -18.99 and -10.88, which is a rather wide span.

The analyses of these sections have also shown that firstly, different languages
reach different magnitudes in the established outliers, and secondly, different
sentences can heavily influence how pronounced an outlier becomes. It is
however not the case that, especially in the biggest outlier 588, there are instances
that show no rogue behavior – all produced values on any embedding level are rogue
in these dimensions. The specific values vary within some range around the ones in
the generalized embeddings, but they don’t completely fall out of their scope.

5.2 English side of Tatoeba

Up until this point, this work was only concerned with one side of the Tatoeba
dataset. However the evaluation on the task always involves two languages: the
sentences of the language in question, i.e. one of the 36 languages listed before, and
their potential English translations.

Because the similarity search performed in the context of the task relies directly
on the sentence representations of both languages in a pair, it is crucial to also
inspect the English side of embeddings on outliers. As English is the language that
XLM-R has seen the most data in during pre-training (see Figure 4.1), it may for
example be the case that the outlier dimensions of English sentence embeddings are
not as pronounced, or even non-existent.

If such discrepancy is the case, this may be a big factor that influences the co-
sine similarity search of Tatoeba, and consequently, the mediocre task performance,
which for XLM-R lies at 50.35%. Therefore it is in this section analyzed, whether
English embeddings exhibit any behavior that deviates from the rest of the lan-
guages.

5.2.1 Outliers

As a first step it needs to be verified that the same outlier dimensions are likewise
present in English sentence representations. For this, all English sentences available
in the Tatoeba dataset are encoded and averaged over. This resulting average rep-
resentation is then examined for rogue dimensions following the previously used 3σ
convention.

The following generalized representation for English sentences is observed:
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Figure 5.4: English embedding averaged over all English Tatoeba sentences. All
sentence embeddings were produced by XLM-R’s layer 8.

In this averaged English representation, the following rogue dimensions with
their respective magnitudes are established. For reference, the results of the previ-
ously analyzed generalized embedding, which averaged over all other languages, are
included here again.

english embedding outliers

180 184 239 306 588
value 1.96 -2.21 -2.51 2.93 -14.91

generalized (36 languages) outliers

180 239 306 588
value 1.87 -2.06 3.07 -15.16

The above results show that encoding English sentences with XLM-R, specifi-
cally layer 8, produces the same rogue dimensions as for the other languages. The
magnitudes of the outliers are likewise close to the previously established ones.
The only difference is the English embedding’s outlier 184, which could before only
be established for 12 out of the 36 languages (see section 5.1.1).
Whether or not 184 being more of an outlier in English embeddings plays a dis-
tinctive role in the performance of the Tatoeba task will be addressed in the next
chapter.

5.2.2 Comparison of parallel sentences

Since it is verified that encoding English input leads to the same rogue dimensions2

as seen for the other languages, it is now investigated whether there are any system-
atic differences in the representations on a sentence level.

Because the Tatoeba similarity search is carried out relying directly on the sen-
tence embeddings of a language pair xx-en, it is sensible to compare the parallel
sentences of these pairs on the topic of the established rogue dimensions.

The way this is done in this section is to visualize the sentence representations
of both languages in a pair in a similar manner as in Figure 5.3, but including both
languages in the plot. These visualizations are generated for all outliers established
for English, i.e. 180, 184, 239, 306 and 588. After analyzing the findings one by
one for each language pair per dimension, the key observations are presented here.

Note that the following plots show parallel sentences of the language in question
and its English translations. Because of this, it is desired for the single values to
be as close to each other as possible. It is therefore primarily looked out for visible
deviations of the English sentence embeddings from the ones of language xx.

2I.e. each outlier established before is also an outlier for English encoded input, not the other
way around.
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In the plots, green markers denote language xx and blue markers denote
English.
It can be observed that overall, what concerns the dimensions 180, 239, 306 and
588, the values in the language pairs are reasonably well aligned. In this context,
“aligned” means that the values are in the same area magnitude-wise and follow
similar shapes, making single values be close to each other, which is desired in
representations of sentences that are translations of each other. “Well aligned”
instances can e.g. be seen in the following, taking specifically 588 as an example:

Figure 5.5: Well aligned examples of parallel Tatoeba sentences in rogue dimensions.

Such well aligned cases can be found numerous times in each of the above men-
tioned outlier dimensions, although they are most common in 588 and 180. There
are however also plenty of instances where the parallel sentences exhibit values more
differing. In those cases, it seems as though the two languages are scaled slightly
differently and therefore accumulate in different areas of magnitude:

Figure 5.6: Worse aligned examples of parallel Tatoeba sentences in rogue dimen-
sions.

In dimensions 180, 239, 306 and 588, in such instances it is predominantly the
case that the two groups of embedding values still overlap to some extent. Specifi-
cally in dimension 184 however, which was marked as rogue for English input but
not generally for the other languages, the groups are separated very clearly.

In both of the cases it is not determined how much single values, which should
ideally be as close as possible to each other, actually deviate from one another. The
above analysis is to be seen as an approximate evaluation of the situation between
xx-en sentence pairs in context of the rogue dimensions.

The main conclusion to be drawn from this is that there are indeed differences
between the languages tested in Tatoeba and their English counterparts, which are
to be matched through cosine similarity in the process of the task. How big of a
role each rogue dimension actually plays for the similarity search will be evaluated
further as this work progresses.
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5.3 Impact on Tatoeba rankings

Sections 5.1 and 5.2 of this chapter have in greater detail analyzed rogue dimensions
focusing on the embeddings themselves. As a result, the representations generated
by XLM-R are now better understood with respect to outliers. This section now
extends the detailed analysis into the direction of the Tatoeba task and the perfor-
mance of XLM-R’s embeddings on it.

The way to gain more specific insights about its results in context of removing
certain outlier dimensions is to firstly understand what exactly happens during eval-
uation. In an xx-en collection of sentences, where for each xx sentence there is a
correct en translation, for each xx sentence the en collection of potential translations
is searched for the most suitable candidate. This is done by calculating the cosine
similarity of this sentence with all available English ones based on their sentence
embeddings which are generated by the model to be evaluated on the task.

This process produces a ranking of the English sentences for each xx sentence,
sorted from having produced the highest cosine similarity to the lowest. The one
which exhibits the highest cosine similarity is then regarded as the translation of the
current xx sentence in question. This process is repeated for all xx sentences until
each of them is paired with a potential en translation. The accuracy of this result is
then established by comparing the produced pairings with the correct ones, i.e. the
original xx-en parallel sentences.

To now analyze what changes happen to the task performance when rogue di-
mensions are removed from the embeddings, more detailed results can be extracted
instead of simply the achieved accuracy scores: for the following analyses, the evalu-
ation code is modified such that not only the final pairings are saved, but the entire
rankings produced by cosine similarity search for each xx sentence. Additionally to
the ranking of English sentences, each of their achieved cosine similarity scores is
saved. For insights on this matter, the outlier dimensions 588 and 306 are chosen.

5.3.1 Ranking correlations

One aspect to further investigate is the extent to which the similarity rankings
change when an outlier dimension is removed from the sentence embeddings.

The accuracy scores include only information about the first positions in those
rankings, i.e. the English sentences that were actually chosen as the correct transla-
tions. This section however examines how all ranking positions change. The reason
for doing this is to understand whether the removal of a rogue dimension affects the
rankings just enough to push a different sentence to the first position, but otherwise
doesn’t do much, or if by doing so an entirely different ranking is produced.

To assess the described effect, the Spearman rank-order correlation is employed,
which “measures the strength and direction of the monotonic relationship between
two ranked variables” [Laerd Statistics, 2018]. It is calculated as:

ρ =
1− 6

∑
d2
i

n(n2 − 1)
(5.1)

In the above formula, n denotes the number of observations and d stands for the
difference between the two rank values of each observation. This measurement is
applied to the Tatoeba similarity search results by comparing the rankings produced
by the original embeddings with the rankings produced by the embeddings where
an outlier dimension had been removed.
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In order to compare the rankings correctly, they need to be transformed into real
rankings first. What is produced by the similarity search are lists of sentence IDs,
sorted from being at rank 1 to being at last rank. For the Spearman correlation to
work, these results need to be modified the following way:

produced by original embeddings

ranked sentence IDs 141 23 285 10 97 ... 103
ranking 1 2 3 4 5 ... 250

produced by modified embeddings

ranked sentence IDs 285 23 141 88 43 ... 56
ranking 3 2 1 45 19 ... 187

Table 5.1: Transformation of ranked sentences to rankings for Spearman correlation.

Taking the sentence ID ranking produced by the original embeddings, each po-
sition is simply replaced by a number in an ascending manner starting from 1. This
ranking itself is always the same, although the associated sentence IDs will change
for each tested instance. It is only important to save which sentence ID is linked to
which rank in this original ranking.

As for the results produced by the modified embeddings, the ranked list of sen-
tence IDs will have changed. For example, sentence 285 which came in 3rd place
originally3, may have risen to 1st place here. In order to correctly compare how
this ranking changed from the original one, each sentence ID needs to be given the
ranking number it achieved originally. Therefore here, 285 is assigned the rank 3.
The same principle applies to all other sentence IDs of this instance.

The reason why the IDs themselves can’t be used for comparison here, is be-
cause of the way the Spearman correlation works: as pointed out, the variable d in
Equation (5.1) stands for the difference between two ranks. By including this into
the calculation, the Spearman correlation accounts for how far each rank has moved.
If instead of the ranks, the actual IDs are compared, for position 1 a difference of
285−141 = 144 would be produced, instead of 3−1 = 2. A difference of 2 is however
correct, since the sentence 285 has indeed moved up by 2 ranks.

Computing the correlation for each sentence-ranking of each language and then
taking the mean value, the following results show how much the rankings shift on
average, when a certain outlier dimension is prior removed from the embeddings.
The correlation coefficient ρ can take on values from -1 to +1, where -1 corresponds
to a negative association of ranks, +1 means a positive association of ranks, and 0
means that there is no association [Laerd Statistics, 2018].

In this use case, -1 does not generally occur since this would mean that the ranks
are perfectly inverted. +1 means that the two compared rankings are identical, and
0 means that they are entirely different. It is also noted that, for saving storage
space, only the first 250 positions of each sentence-ranking are saved and evaluated
instead of up to a thousand4.

The following shows the correlation coefficients reached by the layer 8 embed-
dings of the XLM-R model by comparing the original results with the ones achieved
after removing dimension 588, 306 and 741, respectively. Since 741 was not an

3Note: the sentence ID rankings in this example are fictional.
4Reminder: most Tatoeba languages include up to 1000 sentences. For those including less than

250, all available ranks are saved.
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outlier in layer 8, it is here shown as comparison as to what happens to the ranks,
when a non-rogue dimension is removed.

original vs. no 588 original vs. no 306 original vs. no 741

first 250 positions 0.31 0.86 0.98
first 50 positions 0.11 0.81 0.98
first 10 positions 0.06 0.76 0.97

Table 5.2: Spearman ranking correlations between results of original and modified
embeddings (XLM-R layer 8).

Since for the final result it is most important which sentence gets first rank, the
correlation is also measured for ranges closer to the first positions, i.e. aside from
the first 250 positions, the first 50 and finally the first 10 are also taken into account
to visualize a dynamic.

As can be deduced from Table 5.2, the sentence-rankings produced by embed-
dings where dimension 588 was zeroed out are drastically different from the original
rankings: considering the first 250 positions, the correlation lies at 0.31. As ex-
plained above, the closer this value gets to 0, the less of a correlation there is.
Falling even lower to 0.11 for the first 50 positions and 0.06 regarding positions 1
through 10, this shows that these rankings are almost completely different to the
original ones. Removing the outlier 306, the effect is less pronounced with values
from 0.86 to 0.76 in the first positions, meaning that the ranks produced here are
to some extent different, but not as extremely as with 588.

To compare the effects of removing outliers with removing non-outliers, it can
be seen that embeddings without dimension 741, which is not rogue in layer 8
representations, the produced rankings are almost identical to the originals, as the
correlations are consistently very close to 1.

The analysis of ranking correlations in this section has shown how much the
removal of rogue dimensions from the sentence representations impacts the result
of similarity search in detail: not only do different sentences move to rank 1, thus
resulting in better accuracy on the task – the outliers’ removal instead shuffles
nearly the entire rankings, making these single dimensions impact the entire
task result to a high degree. This is especially the case for the biggest outlier 588,
as its removal produces almost completely different sentence-rankings.

5.3.2 Cosine scores

Another aspect to consider are the achieved cosine similarity scores associated with
the sentence-rankings. Potential differences in this area are analyzed in order to
understand how much the actual scores that control the rankings are affected by
outlier removal. It is possible that, while producing different sentence-rankings, the
scores themselves do not differ much, but it could also be the case that the cosine
similarities achieved between xx and en sentences noticeably change after modifying
the embeddings.

This section visualizes cosine distances (= 1 - cosine similarity) of the rankings
by language. In the following plots, the x-axis denotes the position in the ranking,
going from 1 to 250. The y-axis marks the magnitude of each ranking position’s
cosine distance. I.e. a distance of 0.1 at position 10 means that, for the respective
language, on average the en sentence coming in rank 10 achieves a cosine distance
of 0.1 with the xx sentence.
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The following graphics show the cosine distance in rankings produced by the
unmodified model vs. the ones produced by modified ones. This is once done for
embeddings without dimension 588 and once without 306.5

(a) original vs. no 588

(b) original vs. no 306

Figure 5.7: Cosine distance scores of sentence-rankings between results of original
and modified embeddings (XLM-R layer 8).

In the above figures, the dotted lines denote values achieved by the modified
models, whereas the solid lines are produced by the original model. While the vi-
sualization considering the no-306 embeddings show that the cosine scores do not
noticeably differ from the ones of the original model, the effect of removing 588 is
drastic: it can be seen how running similarity search with the original model’s em-
beddings squeezes all resulting cosine values into the range of about 0.0 to 0.2. As
soon as the single dimension 588 is removed from the representations, the calculated
cosines collectively rise up in magnitude and also spread apart.

This means that by removing 588, the compared xx and en sentences
on average become by far more distant from each other, which may play
a role in the increased Tatoeba task performance when this dimension is removed6.
This may be helpful in the sense that the cosine distance to the correct en sentence,
which should become top rank, is significantly more delimited from the rest of the
candidates. This is not the case in the originally produced cosines, which are all
comparatively close to each other. For removing 306, this effect is extremely slight.

5Note: The languages jv and te are omitted here since they exhibit less than 250 sentences,
i.e. less than 250 ranks. Their results were however observed to be identical to the rest.

6For reference, the removal of 588 caused an increase of +2.64% in task performance.
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5.4 Observations

This chapter has demonstrated a closer investigation of the previously gained in-
sights on rogue dimensions with respect to the embeddings themselves, as well as
the outliers’ influence on Tatoeba task performance.

It was for one verified that rogue dimensions consistently occur on all levels of
embeddings, i.e. they are not only a product of heavy averaging over all generated
representations, but persistently appear on all sentence level embeddings across all
languages. While also being present for English input, the English counterparts in
the Tatoeba parallel datasets are often not aligned well with the other language’s
sentences in the outlier dimensions, which may disturb the similarity search of the
task.

Concerning the factual influence of outliers on Tatoeba task performance, it was
shown how their removal heavily affects the overall outcome of the similarity search,
not only the chosen sentence pairings that are important to the accuracy. By re-
moving especially dimension 588, the entire sentence-rankings are shuffled as well
as do the cosine distances between the sentences significantly rise overall, making xx

and en sentences consistently more different from each other in this dimension.

The next chapter investigates the reason as to why these outliers’ removal has such
drastic effects on the similarity search task. It needs to be looked into the key
characteristics of an outlier to draw connections to its impacts. Chapter 6 is therefore
guided by the question: what makes a rogue dimension?

44



Chapter 6

What makes a rogue dimension?

This chapter is concerned with a more practical outlook on embedding outliers.
While rogue dimensions have been identified and analyzed in the previous chapters,
it is now aspired to establish the properties of such dimensions which make them
influence task performance, especially in the context of cosine similarity search.

In the process, this shifts the previous definition of a rogue dimension, which is
solely characterized by high magnitude, to the definition of a dimension influencing
task performance. Such outliers can then be leveraged to make the right adjustments
to a model’s embeddings to achieve practical benefits.

6.1 Expanded set of outliers

Up until now, this thesis has treated an embedding dimension as rogue if its value
surpasses the 3σ convention, as is likewise done in previous research. This however
is a rather strict rule which may not be the final definition of embedding outliers.

For systematically identifying obviously rogue dimensions like 588 in XLM-R,
this may be a good method. The hypothesis at this point is however that there could
be other dimensions which also influence task performance when they are removed.
Since so far the only criterion for a rogue dimension is its magnitude, the potential
set of outliers is expanded according to this principle.

6.1.1 Method

To find more potentially rogue dimensions to analyze, the 3σ rule is replaced by a
slightly different convention. The magnitude is still the key factor, but the dimension
values are not compared to a certain threshold. Instead, the top dimensions farthest
from zero are considered. In detail, this means the following:

For each of the 36 language-embeddings (as defined in 5.1.1), the top 10 di-
mensions are selected which are farthest from zero into either direction. These
dimensions are then included into the new, expanded set of outliers for XLM-R1.

Because not each of these dimensions occurs equally across all languages, the number
of languages in which a dimension is an outlier is also reported:

dimension 588 306 180 239 184 72 741 12 145

# languages 36 36 36 36 36 36 26 23 22

dimensions 89 151 694 259 267 459 723 152 720

# languages 19 13 11 7 6 5 5 5 2

Table 6.1: Expanded set of outliers for XLM-R’s layer 8 embeddings.

1As all previous experiments, this analysis also uses the model’s layer 8 embeddings.
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Looking at Table 6.1, there are 6 dimensions which were among the top-10 out-
liers for all languages, namely 588, 306, 180, 239, 184 and 72, which are already
more than established for XLM-R’s layer 8 with the 3σ rule (see section 4.3.3). Tak-
ing the entire list of outliers produced by the current method, 18 dimensions are
given as candidates to investigate in this section.

6.1.2 Effects on Tatoeba

The key question that is asked in this chapter is whether there are other dimensions
that exhibit similar behavior to the rogue dimensions established before. The most
obvious effect can be seen by looking at their influence on task performance. Since
this thesis focuses on the Tatoeba similarity search, this section analyzes the newly
found potential outliers on this task.

In detail, each of the dimensions from the new expanded set of outliers are zeroed
out one by one as described in 4.4.2. The modified embeddings are then used for
evaluation on Tatoeba.

dimension 588 306 180 239 184 72 741 12 145

score effect +2.64 +0.24 +0.22 +0.76 +0.12 -0.06 +0.01 +0.04 +0.31

dimensions 89 151 694 259 267 459 723 152 720

score effect +0.20 +0.57 -0.04 +0.15 +0.30 +0.34 +0.40 +0.97 +0.13

Table 6.2: Effects of removing new outliers on Tatoeba accuracy.

The results above show the influence on the accuracy achieved on the task after
each of the respective dimensions is zeroed out. Note that the effects of 588, 306,

180 and 239 had already been established in section 4.4.2.

As can be seen, the extended list of potential outliers did find other dimen-
sions that also have an impact on task performance: for instance, removing
dimension 152, which was not marked as rogue by the 3σ convention and was also
among the top-10 outliers for only 5 out of 36 languages, has a positive effect of
+0.97 on Tatoeba. Meanwhile removing dimension 306 which was established as
rogue before and is an outlier for all 36 languages, produces an improvement of only
+0.24. Similar observations can be made for a number of the dimensions above.

Since these new dimensions were reported to be rogue for only a fraction of the
tested languages, it is natural to assume that the score improvements may be led
by exactly those languages in the Tatoeba evaluation. This hypothesis is tested in
the following.

6.1.3 Role of single languages

Because e.g. dimension 152 was established as an outlier by the new method for only
5 languages out of 36, it may be the case that its removal improves the similarity
search by a big amount on exactly those languages, but does not have an effect for
the other ones.

Therefore, before other possibilities are looked into, it first needs to be verified
whether the results are tied to specific languages only. For this, the two new outliers
152 and 723 are picked out, which both were considered rogue in only 5 languages.
The following compares for these two dimensions, whether there is a direct relation-
ship between the languages that reported these outliers, and the per-language score
improvements on Tatoeba.
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language score outlier?
th +3.83 no
kk +2.08 no
jv +1.95 no
tr +1.79 no
ml +1.75 no
... ... no
pt +1.3 yes
... ... no
ru +0.79 yes
... ... no
fr +0.5 yes
... ... no
de +0.39 yes
... ... no
bg +0.09 yes
sw +0.001 no

(a) removing 152

language score outlier?
ru +1.29 no
he +1.2 no
pt +1.1 no
... ... no
hu +1.09 yes
... ... no
kk +0.87 yes
... ... no
ka +0.67 yes
et +0.6 yes
... ... no
eu +0.39 yes
... ... no
ml -0.14 no
vi -0.39 no
te -0.43 no

(b) removing 723

Table 6.3: Tatoeba improvements per language for new outliers 152 and 723.

The above results show the score improvements on Tatoeba per evaluated lan-
guage, once after zeroing out 152, and once 723. The sorting goes from the language
with the biggest improvement to the lowest. The rows in bold font mark the lan-
guages for which the respective dimension was reported to be rogue in the first place,
see section 6.1.1.

As can be seen, the 5 respective languages that exhibited the two outliers are
not the only ones that benefit from the dimensions’ removal: in fact, there is a
number of other languages which benefit even more from zeroing those dimensions
out, although they did not report these dimensions as rogue in their embeddings.

This indicates that the similarity search improvements of clipping the
new outliers are not dominated by the languages that exhibited them -
their removal affects the performance on other languages just as well and even more.

6.1.4 Role of outlier magnitude

As it was shown that not the single languages exhibiting certain rogue dimensions
are responsible for the overall score improvements, the factor that was crucial up
until this point is the next to be assessed: magnitude. The 3σ convention, as well as
the method of the expanded set of outliers of section 6.1.1, rely on the magnitude
of each embedding dimension to establish it as being rogue or not.

The question which in general needs to be addressed then, is whether there is
a linear relationship between a dimension’s magnitude and its effects on the embed-
dings, or in other words, whether the bigger a dimension’s value is, the more a task
like Tatoeba would benefit from its removal.

For insights on this matter, each of the outliers established in 6.1.1 are compared
by their magnitudes and the score improvements they caused respectively. The
following table takes one of Tatoeba’s languages, kk, as an example for this. kk is
also the language which benefited the most from the removal of the biggest outlier,
588.
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dim best to worst task improvement average dim value
588 +7.8 -14.9
152 +2.08 -0.76
151 +1.56 0.59
267 +1.39 -0.84
239 +1.2 -1.81
12 +0.87 1.33
723 +0.86 -1.02
184 +0.7 -1.31
89 +0.69 1.07
180 +0.52 1.99
694 +0.52 0.61
720 +0.52 0.81
145 +0.52 1.12
306 +0.34 3.03
72 +0.34 1.43
259 +0.34 0.96
741 +0.17 0.99
459 -0.002 -0.51

Table 6.4: Outlier dimensions compared by magnitude and task effect for the exam-
ple Tatoeba language kk.

The above table shows that by removing e.g. dimension 588 from the embed-
dings, the accuracy of the Tatoeba task performance on language kk improves by
+7.8%. At the same time, 588 exhibits the highest absolute value in the kk em-
beddings with an average of -14.9. This coincides with the hypothesis that “bigger”
outliers cause bigger effects on the task.

However, the second biggest outlier, which is 306 with an average value of 3.03,
improves the performance by only 0.34%, coming after 12 other dimensions which
all exhibit smaller values. Removing dimension 152 causes the second biggest in-
crease in accuracy, but magnitude-wise it lies at only -0.76 on average. It had not
even been considered an outlier for this language (see Table 6.3).

The magnitude of a dimension does therefore not equal big effects in terms
of e.g. improved task performance when removed. The reason why this is important
depends on the perspective one has on outliers and what one plans to do with them:
for example, if the Tatoeba performance of XLM-R needs to be improved, and it is
known that removing outliers in the model’s embeddings is beneficial for the task,
it is not the best to define outliers purely by their magnitude. A dimension with
significantly high magnitude such as 588 may have such effect, but, as the results
show, there can exist other, low magnitude dimensions which also produce similar
results.

6.2 Search for outlier criteria

Based off of the previous section’s outcome, the central question of this chapter
becomes apparent, namely: what makes a rogue dimension? It is reasonable to
characterize an outlier by simply being a dimension with exceptionally high magni-
tude. This is a valid theoretical definition.

If however the intent is to make use of outliers, like improving task performance
by removing the right dimensions, other criteria may define a rogue dimension bet-
ter. In the context of this thesis, the central task for evaluation was chosen to be
the Tatoeba similarity search. In the following, outliers are treated as a means to
improve XLM-R’s performance on this task. To find out which characteristics a
dimension leading to improvement holds, the next analyses are performed.
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6.2.1 Anisotropy

The first point that is looked into is anisotropy, since magnitude-wise outliers have
already been connected to this phenomenon by previous research: “The dimensions
which drive anisotropy are centered far from the origin relative to other dimensions”
[Timkey and van Schijndel, 2021, p. 4529].

For reference, anisotropy means that randomly selected word representations are
highly similar to each other. Removing the dimensions associated with anisotropy
causes the embedding spaces to become by far more isotropic (see also section 3.2).

Knowing the above, it is plausible to assume that a) outliers of high magnitude may
likewise cause anisotropy in XLM-R’s embeddings, and b) removing these outliers
is benefiting similarity search in the Tatoeba task because anisotropy is reduced by
that.
In order to draw further conclusions, it needs first be verified whether anisotropy
is present in XLM-R’s sentence embeddings in the first place. For this, the same
procedure as introduced by Timkey and van Schijndel [2021] is applied, which first
calculates the overall expected anisotropy in a given embedding space (i.e. how sim-
ilar randomly chosen representations are expected to be), and then establishes the
top embedding dimensions contributing to the phenomenon. For a detailed mathe-
matical description of this method, see section 3.2.3.

Because in the case of Tatoeba, cosine similarity is always calculated between xx

and en sentences, it is in the following investigated how similar a randomly chosen
xx sentence and a randomly chosen en sentence are expected to be. If it is found
that on average, any such two sentences are highly similar to each other, this is
harmful for the similarity search task, since only the correct pairings should have a
high cosine similarity.

For each of the 36 Tatoeba xx-en language pairs, 10,000 random pairs of xx and
en sentence representations generated by XLM-R’s layer 8 are sampled. Based off of
their cosine similarities it is through the above mentioned method calculated, how
anisotropic these embeddings are and which dimensions are the top contributors to
the problem.

kk-en

Estimated anisotropy: 0.902

dimension contribution
588 0.836
306 0.032
180 0.016
239 0.016
184 0.010

ja-en

Estimated anisotropy: 0.911

dimension contribution
588 0.839
306 0.044
239 0.019
180 0.011
184 0.010

de-en

Estimated anisotropy: 0.927

dimension contribution
588 0.833
306 0.032
239 0.028
184 0.018
180 0.009

ar-en

Estimated anisotropy: 0.917

dimension contribution
588 0.844
306 0.031
239 0.015
180 0.015
184 0.014

Table 6.5: Anisotropy between xx-en sentences with top contributing dimensions
(XLM-R layer 8 embeddings).
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Table 6.5 shows four example language-pairs and their respective anisotropy
results. For instance in the case of de-en, they are to be read as following: any
randomly paired de-en sentence pair has an average cosine similarity of 0.927. The
top contributing embedding dimension is 588, which contributes around 83% to this
expected cosine value.
For all 36 xx-en pairs, the anisotropy on average lies at 0.914, making the em-
beddings highly anisotropic: this means that during the Tatoeba similarity search
between xx and en sentences, any two sentences are highly similar to each
other.

The biggest contributor across all languages is dimension 588, after which the
dimensions 306, 239, 184 and 180 follow. Referring back to previously established
outliers by essentially considering the dimensions with the biggest values, it can be
observed that the dimensions contributing to anisotropy are exactly the
magnitude-wise outliers. This aligns with the results of related research, where
for multiple language models, the dimensions with the highest magnitudes were
found to add the most to anisotropy (see 3.2.3).

6.2.2 Reducing anisotropy

Removing the above anisotropy-related outliers 588, 306, 239, 184 and 180 is
supposed to reduce the anisotropy in the embeddings. In section 6.1.2, these outliers
have already been removed from the embeddings, after which the effect on Tatoeba
performance was measured. This section now again zeroes out the dimensions, but
instead measures how much more isotropic the representations become. The average
anisotropy of the unmodified embeddings was reported to be 0.914.

removed dim 588 306 239 184 180

score effect +2.64 +0.24 +0.76 +0.12 +0.22
anisotropy 0.643 0.911 0.913 0.913 0.913

Table 6.6: Effects of removing anisotropy-related outliers on anisotropy and Tatoeba
scores.

The results in Table 6.6 show, how much anisotropy reduces after each of the
dimensions is zeroed out. It is observed that, without 588, the average cosine simi-
larity between random embeddings drops to 0.643 from the initial 0.914. This does
not make the embeddings isotropic, however it significantly reduces the problem.
This result is also in line with the effects on cosine distances reported in Figure 5.7,
where overall the sentences became by far more distant from one another, once 588

is discarded.
Removing all other dimensions, which have also been identified as contributing

to anisotropy, does not have a similarly large effect. This is however attributed to
the fact that, percentage-wise, they do not contribute nearly as much to the phe-
nomenon as 588 (see Table 6.5).

Overall, there could be observed no linear relationship between decrease of
anisotropy and benefits for similarity search: for example, removing 239 improves
the Tatoeba task by +0.76, while 184 achieves an increase of only +0.12. Both of
their removals however have identically small effects on anisotropy.

Nonetheless, the biggest outlier 588 has a clear influence on the embed-
dings’ anisotropy: as long as it is present, all compared sentence embeddings are
almost identical to each other. By removing the dimension, their similarity decreases
by 0.271 which could not be achieved by any other single (!) dimension.
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What all of the above dimensions have in common however, is that they could
be identified as outliers in the sense of the similarity search task by analyzing
anisotropy: all top-contributors to anisotropy are simultaneously beneficial for re-
moval for Tatoeba, whether the effect is big or smaller.

6.2.3 Analyzing parallel data

The previous sections established the group of anisotropy-related outliers: these are
dimensions which contribute to the embeddings’ anisotropy, at the same time exhibit
values of high magnitudes, and are beneficial for Tatoeba when removed.

Referring back to section 6.1, dimensions other than these had been established,
whose removal likewise leads to task improvement. However, these are neither as-
sociated with high magnitudes, nor do they contribute to anisotropy. The question
therefore remains, which other criteria may indicate such task-improving outliers.

Searching for further insights, the existence of Tatoeba parallel sentences is utilized.
The following analysis is led by the idea that sentences, which are translations of
each other, should ideally exhibit high cosine similarities.

Therefore firstly, the cosines between all xx-en parallel sentences are calculated.
In order to then find dimensions that are influential to the score, each of the 768
dimensions is zeroed out one by one, each time re-calculating cosine similarity.

By doing this it can be observed, which removed dimension improves the simi-
larity of the parallel data. Since parallel sentences should be as similar as possible,
these dimensions may be good candidates for removal before the Tatoeba task: if
the correct pairs are made more similar, this may help find the correct translation
pairs in Tatoeba.

Figure 6.1: Effect on parallel data cosine similarities after removing each of the 768
embedding dimensions.

Figure 6.1 shows the effect on the cosine similarity between parallel sentences
after removing each of the embedding dimensions, averaged over all sentences and
languages of the Tatoeba dataset. The list includes each dimension with the amount
by which similarity was improved/worsened. It is sorted from dimensions causing
the biggest improvement, to the ones causing the opposite.

It is observed that the removal of most dimensions causes a small increase in
the cosine similarity. The dimensions at the top of the list however include many
dimensions reported in the expanded set of outliers of section 6.1 – specifically, the
ones not associated with anisotropy or universally big magnitudes: these include
dimensions 267, 459, 152, 151, 12, 145 and 7232.

2Other dimensions from Table 6.1 may also lie near the top. It is chosen to only display the
top-10 of the list here.
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Simultaneously, the dimensions reported at the end of the list, i.e. whose removal
caused the parallel data cosines to decrease, are observed to include the previously
identified anisotropy-related outliers. This section’s experiment therefore seems to
identify two groups of outliers, which is further discussed in the following.

6.3 Established outlier groups

Searching for criteria able to characterize an outlier in the sense that its removal
benefits the similarity search task, the previous section seems to have identified two
groups of them.

After collecting the effects on parallel data cosine similarity of each of the 768
dimensions’ removal, the ones improving and the ones worsening the similarity are
pointed out, marked as green and red respectively in Figure 6.1. Looking at the
actual dimensions these two groups include, it is observed that the majority of
them matches the outliers whose removal benefits Tatoeba:

dimension 588 306 180 239 184 72 741 12 145

score effect +2.64 +0.24 +0.22 +0.76 +0.12 -0.06 +0.01 +0.04 +0.31

dimensions 89 151 694 259 267 459 723 152 720

score effect +0.20 +0.57 -0.04 +0.15 +0.30 +0.34 +0.40 +0.97 +0.13

Table 6.7: Effects of expanded magnitude-outliers on Tatoeba, but marked the di-
mensions identified by parallel data analysis. Green: Removal improves parallel
data cosine. Red: Removal worsens parallel data cosine.

6.3.1 Anisotropy-related outliers

The method proposed in the previous section 6.2.3 produced dimensions which de-
crease the similarity between parallel sentences when zeroed out from the embed-
dings. Interestingly, this group includes the dimensions contributing to anisotropy
as established in 6.2.1, i.e. the dimensions 588, 306, 239 and 180. The only one
missing is 184.
These are in the following referred to as anisotropy-related outliers. What defines
them, is a) their association with the embeddings’ anisotropy, b) their magnitudes3

and c) their removal being beneficial for the similarity search task.

The reason as to why the method in 6.2.3 has identified this group through them
decreasing parallel data similarity when removed, can be explained:

As these dimensions are contributors to anisotropy, they “inflate” cosine similar-
ity in general, i.e. all sentences are more similar to each other than they should be.
By removing them, the cosine similarity level, i.e. anisotropy, is reduced. Reducing
anisotropy however helps the task of similarity search, since now not any random
sentences are more similar than desirable.
This is the reason why these dimensions’ removal on one hand worsens parallel data
similarity, but then on the other hand helps with similarity search.

Referring back to the “red group” identified in the previous section, there are
three dimensions which were not specifically associated with anisotropy: 72, 741

and 89. These are likewise not in the following included in anisotropy-related outliers
for the next reasons:

3Clarification: “magnitude” here means that they were universally, across all 36 Tatoeba lan-
guages, reported to be among the biggest dimensions. For details refer to 6.1.1.
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72, while worsening parallel data similarity when removed, also worsens similar-
ity search results when removed – its removal therefore simply seems to generally
have a negative effect. 741 has only a very minimal effect on task performance and
is therefore also disregarded. 89 has the smallest negative effect on parallel data
out of the entire red group (see Figure 6.1) and may have ended up there by acci-
dent, i.e. through the process of heavy averaging over all sentences and languages.
Regardless, it does lead to a considerable improvement on Tatoeba. For formality
reasons, since it does not pass criteria a) and b), it is not included in the group.

Dimension 184 is related to anisotropy, it has simply not been identified by the
method of 6.2.3. Since it still passes criteria a), b) and c), the final group of
anisotropy-related outliers consists of: 588, 306, 239, 184 and 180.

6.3.2 Similarity-harming outliers

The “green group” has likewise reported dimensions which have previously already
been identified as task-beneficial outliers, namely 12, 145, 151, 267, 459, 723

and 152. Here, in contrast to the “red group”, their removal improves the cosine
similarities of parallel data.

The reason as to why these dimensions are also outliers is different from the
anisotropy-outliers, but more staightforward: since their removal causes parallel
sentences to become more similar to each other, which is desirable, this should
likewise make it easier to find those correct translation pairs during the similarity
search of the task.
This implies that the presence of these dimensions may be somewhat harmful to
the representational quality of the sentence embeddings. The fact that specifically
parallel sentences become closer in their representations when certain dimensions
are absent, indicates that those dimensions may e.g. not encode the feature they
represent properly. Because they essentially harm the similarity of sentences, which
are supposed to be similar, this group is in the following referred to as similarity-
harming outliers.

Apart from the dimensions of this group whose removal already was shown to
be beneficial for the Tatoeba task, the parallel data method identified other ones,
which had not been considered before. These are 63, 266 and 728. According to
the above reasoning, these dimensions’ removal could potentially also improve the
Tatoeba task. Testing this, the following effects could be observed: 63: +0.16, 266:
+0.22, and 728: +0.24. This means, that the proposed method has successfully
identified new task-improving outliers, which were not found before by any
other method. Subsequently, the similarity-harming outliers consist of: 12,

63, 145, 151, 152, 266, 267, 459, 723 and 728.

Concluding the search for outliers whose removal improves similarity search, the
following dimensions are being regarded as beneficial:

Anisotropy-related

dim 588 306 239 184 180

score +2.64 +0.24 +0.76 +0.12 +0.22

Similarity-harming

dim 12 63 145 151 152 266 267 459 723 728

score +0.04 +0.16 +0.31 +0.57 +0.97 +0.22 +0.30 +0.34 +0.40 +0.24

Table 6.8: Outlier groups with their respective effects on the Tatoeba task.
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6.4 Counter-check on BUCC task

The outlier-groups established above were identified and tested through the Tatoeba
framework, i.e. on Tatoeba sentences and the Tatoeba similarity search task. In
order to now verify, whether the removal of these dimensions can generally be ben-
eficial for cosine-based similarity search, another sentence retrieval task from the
XTREME benchmark is considered: BUCC [Zweigenbaum et al., 2018].

6.4.1 Task and Data

The third BUCC (Building and Using Comparable Corpora) shared task focuses
on the retrieval of parallel sentences between monolingual corpora. While Tatoeba
searches parallel corpora, i.e. each language in a pair has the same number of sen-
tences and all of them have a corresponding translation in the other language, BUCC
uses comparable corpora. Here, there is only a certain number of parallel sentences,
as the corpora are unaligned and therefore not every sentence from language A can
be paired with one from language B.

The BUCC dataset is made up of Wikipedia articles, which make up the mono-
lingual corpora, and News Commentary4, which are aligned parallel sentences that
are artificially inserted into the monolingual data. They are then treated as the
gold standard of sentence pairs that should be identified. Although there may be
other valid parallel sentence pairs in the corpora, they are not accounted for during
evaluation. [Zweigenbaum et al., 2018]

Similarity search is performed on four language pairs: de-en, fr-en, ru-en and
zh-en, where the available data is split up into sample, training and test set as
following:

Figure 6.2: BUCC 2018 corpus statistics: number of monolingual sentences (fr, en)
and of parallel pairs (gold) for each split and each language pair. The fr column
stands for the non-English language in each pair. [Zweigenbaum et al., 2018, p. 2]

The BUCC task is carried out in the context of the XTREME benchmark using
XLM-R’s layer 8 embeddings. Because the gold labels are only made available for
the Sample split, this part of the data is evaluated on. As for the similarity measure,
cosine similarity is applied as in Tatoeba. Therefore the only differences between the
two tasks are the type of corpora (parallel vs. comparable), the number of language
pairs (36 vs. 4) and the actual sentences.

6.4.2 Baseline performance

In order to compare the impact of the outlier dimensions on BUCC, the task first
needs to be evaluated using the unmodified sentence embeddings, which is done in
this section. The performance of this task is evaluated with Precision, Recall and
F1-score with the regular formulas [Zweigenbaum et al., 2018, p. 2].

4http://www.casmacat.eu/corpus/ news-commentary.html
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P R F1
de-en 89.8 76.6 82.7
fr-en 80.4 69.9 74.8
ru-en 89.8 75.5 82.0
zh-en 64.8 63.8 64.3

average 81.2 71.4 75.9

Table 6.9: Baseline results on BUCC using XLM-R layer 8 embeddings.

Though there are some discrepancies between the languages, i.e. zh-en generally
performing worse than the others, overall XLM-R manages to produce reasonably
good results. It is in the following examined whether the removal of the outlier
dimensions established for Tatoeba are likewise beneficial for the performance on
BUCC.

6.4.3 Removing outliers

The dimensions established as anisotropy-related and similarity-harming outliers
are tested for their effects on the BUCC task by removing each of them from the
embeddings separately. After each removal, the similarity search is run, showing
by how much the modification has improved or worsened the performance. In the
following, only the average scores are reported.

Anisotropy-related outliers

dim 588 306 239 184 180

F1 +1.4 -0.1 +0.6 +0.5 +0.2
P +1.3 +3.2 +1.2 +2.9 -0.4
R +1.4 -2.3 -0.3 -0.9 +0.7

Similarity-harming outliers

dim 12 63 145 151 152 266 267 459 723 728

F1 +1.2 +0.4 +0.9 +0.7 +0.2 +0.1 +0.3 +0.1 +0.0 +0.3
P +1.6 -0.3 +2.1 +1.3 +0.5 +0.1 +0.7 +3.3 +0.4 +2.5
R +0.7 +0.9 -0.2 +0.0 -0.1 +0.0 -0.1 -1.9 -0.5 -1.5

Table 6.10: Effects of removing outliers established with Tatoeba on the BUCC task.

Looking at the above results, it can be observed that the overall most beneficial
dimension to remove is 588, as it consistently improves F-score, Precision and Recall,
where the F-score improves the most out of all considered dimensions. Moving
further, this effect is not as consistent with all dimensions, as for example removing
306 actually worsens F1 slightly. At the same time, it improves Precision by a good
amount, but also worsens Recall. This kind of discrepancy is found throughout
both anisotropy-related and similarity-harming outliers’ tables. Considering only
F1 however, the removal of the above dimensions is shown to rise the score.

6.4.4 Discussion

This section has run a counter-check of the outliers established for Tatoeba by re-
moving them for BUCC. Regarding the results in Table 6.10 it first needs to be
pointed out that for one, the scores are averages over 4 languages. This means that
one language-pair, like zh-en as mentioned in 6.4.2, can influence the average score
rather heavily, as opposed to an average that is composed of 36 individual scores as
in Tatoeba. Secondly, it plays an important role that the gold pairs for the datasets,
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i.e. the correct translation pairs that are to be identified, may not be the only
ones present – the similarity search may match sentences that are also translations,
however occurred naturally in the unaligned, monolingual data parts of the datasets
and were therefore not taken into account in the gold pairs. This case specifically is
addressed by the authors as increasing the amount of false positives, which is why
the Precision of the results may be underestimated [Zweigenbaum et al., 2018, p.2 ].

Keeping in mind how the above may decrease the individual scores of Table 6.10,
it can still be observed how the outlier groups established for Tatoeba are
likewise beneficial for BUCC when removed. Considering the F-score as the
main metric, nearly all dimensions have shown an improvement. This may be an
indicator that zeroing out the anisotropy-related and similarity-harming outliers is
generally beneficial for cosine-based similarity search tasks5.

6.5 Further improving similarity search

Led by the question “what makes a rogue dimension?”, this chapter has viewed
outlier dimensions as a way to improve the performance of similarity search. A
dimension was considered rogue not solely by its magnitude, but by its ability to
be beneficial for task performance, when removed. This has produced groups of
dimensions which fulfil exactly this requirement.

To finish this chapter, further methods of embedding modifications, which may
improve similarity search even more, are explored.

6.5.1 Multiple removed outliers

Up until this point, the established outlier dimensions were only removed in an
isolated way from one another, i.e. the effects on similarity search were reported
only for single dimensions.

Naturally, the next step would be to consider bigger groups of rogue dimensions
at once, as this may improve task performance even more. In the following, different
groups of outliers are zeroed out simultaneously, after which the Tatoeba task is
evaluated on.

Anisotropy-related outliers

dimensions accuracy improvement
two most anisotropy-associated (588, 306) +2.81

all +5.74

Similarity-harming outliers

dimensions accuracy improvement
top-3 score-improving (151, 152, 459) +1.87

all +3.77

Both groups

dimensions accuracy improvement
all outliers +9.74

Table 6.11: Effects on Tatoeba after removing entire groups of outliers.

5Specifically regarding XLM-R’s layer 8 embeddings.
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For both outlier groups, a smaller subgroup was removed first, after which the
entire group was also zeroed out. As for anisotropy-related outliers, the subgroup
was chosen to be the two dimensions most consistently associated with anisotropy,
588 and 306. The similarity-harming group first tests the top-3 score improving
dimensions, 151, 151 and 459.

While removing subgroups already shows good score improvements, the most
benefit can be gained from removing the entire groups altogether: by doing this,
Tatoeba performance gains of +5.74 and +3.77 can be achieved. For reference,
the previously biggest gain, achieved by zeroing out the outlier 588, reached an
improvement of +2.64.

The so far best score on Tatoeba by removing outlier dimensions is attained by
removing all 15 from both groups: this improves performance by +9.74 and
reaches an accuracy of 60.09%.

An identical experiment is in the following performed for BUCC:

Anisotropy-related outliers

dimensions F1 P R
all +1.9 +1.8 +1.8

Similarity-harming outliers

dimensions F1 P R
all +3.5 +4.2 +2.9

Both groups

dimensions F1 P R
all outliers +6.2 +8.2 +4.8

Table 6.12: Effects on BUCC after removing entire groups of outliers.

As can be seen, zeroing out entire groups of outliers is likewise more beneficial
for BUCC. While the previously biggest reached improvement was +1.4 on F1 (see
Table 6.10), a gain of +6.2 can be achieved by removing all outliers. Be-
tween the two outlier groups, interestingly removing the similarity-harming outliers
is almost two times more beneficial than removing the anisotropy-related ones. With
Tatoeba, it is the opposite.

This section has explored the maximum of what can be reached by zeroing out
outlier dimensions from the embeddings. The score may get even slightly better, if
rescaling is performed instead (as done in section 4.4.3). As the improvements of
rescaling in comparison to removing are rather minimal, it is not tested here, but
could potentially push the scores a little further.

6.5.2 Fine-tuned embeddings

Another possibility of embedding modification, which does not directly target outlier
dimensions, is to use representations from a fine-tuned model. For this, it was chosen
to fine-tune XLM-R on two of the XTREME benchmark’s cross-lingual sentence
classification tasks, PAWS-X [Yang et al., 2019a] and XNLI [Conneau et al., 2018].
These tasks were considered suitable for fine-tuning on, as their training procedures
may likely lead to embeddings performing better on xx-en similarity search.

PAWS-X For PAWS-X, which aims to detect whether two sentences are para-
phrases, a model is trained on the PAWS training set [Zhang et al., 2019], consisting
of approximately 49,000 labeled English sentence pairs. By translating a part of the
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original English dataset into six other languages, Spanish, French, German, Chi-
nese, Japanese, and Korean, the development and test sets for PAWS-X are created,
offering around 4,000 sentence pairs to classify for each language6. [Yang et al.,
2019a]

XNLI As for XNLI, which requires to decide if sentence B is an entailment, a con-
tradiction or neutral to sentence A, training is performed on the English MultiNLI
training set [Williams et al., 2018b] consisting of over 392,000 examples. The de-
velopment and test sets encompass the languages English, French, Spanish, Ger-
man, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi,
Swahili and Urdu, offering around 7,500 human-annotated sentence pairs7 per lan-
guage [Conneau et al., 2018]. Overall, XNLI is more data intensive than PAWS-X,
as it includes a magnitude more sentences as well as more languages, including low-
resource ones.

For this section’s analysis regarding the improvement of Tatoeba’s similarity search,
XLM-R is fine-tuned on both of these tasks using the following parameters.

task epochs learning rate batch size
PAWS-X 5 2e-5 8

XNLI 1 2e-5 8

After each training has finished, the fine-tuned XLM-R model’s layer 8 is used
to produce sentence embeddings for the sentences of Tatoeba. With the help of
these “fine-tuned embeddings”, the task’s similarity search is then performed. The
following results could be achieved.

fine-tuned on Tatoeba accuracy
PAWS-X 59.90 (+9.55)

XNLI 73.39 (+23.04)

Table 6.13: Results on Tatoeba using fine-tuned embeddings.

As shown in Table 6.13, the embeddings produced by the fine-tuned models
are highly beneficial for the similarity search. As expected, XNLI is the most
effective even though only trained for 1 epoch, as it uses more data overall. Training
on this task improves the performance of the Tatoeba task by +23.04%, which could
not be achieved by removing outliers alone.

This raises the question, whether the outlier dimensions disappeared during the
training process: it may be the case that during fine-tuning, certain dimensions
became less important for the tasks at hand, making them shrink. This concerns
dimensions which can be detected magnitude-wise.

The following shows the average sentence embeddings produced by the fine-tuned
XLM-R models’ 8th layers, using the previously employed “3σ rule” to visualize
dimensions exceeding the norm with a greyed out area. The process of obtaining
the average representations as well as the 3σ convention are described in section 4.3.

62,000 dev and 2,000 test.
72,500 dev and 5,000 test.
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Figure 6.3: Mean representations of PAWS-X and XNLI-finetuned sentence embed-
dings.

Interestingly, the magnitude-wise outliers established previously are still
present: the dimensions exceeding the grey 3σ area are 184, 239, 306 and 588

for PAWS-X and 180, 239, 306 and 588 for XNLI. Since with these embeddings,
a significant improvement on the similarity search task could still be achieved, the
magnitude-wise outliers don’t seem to be the biggest reason for the mediocre per-
formance of XLM-R on Tatoeba.

The embeddings were instead possibly modified in some other way during the
fine-tuning process, which led to more significant improvements than removing these
dimensions. Possibly however, removing all previously established rogue dimensions
from the fine-tuned embeddings, i.e. anisotropy-related and similarity-harming out-
liers, may produce sentence representations even more suited for a good result on
similarity search.
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Chapter 7

Discussion

This thesis has investigated the topic of rogue embedding dimensions occurring in the
multilingual XLM-R model. Specifically, their role in the performance of sentence
similarity search, which directly uses these embeddings, has been examined.
The main findings as well as possible future work are laid out in the following.

7.1 Findings

7.1.1 Outliers across model layers

The XLM-Rbase model consists of 12 layers, which can all be used for obtaining
embeddings. Generating average sentence representations taking into account all
36 languages of the Tatoeba dataset, it has been established which dimensions are
magnitude-wise outliers for each layer (see 4.3.3). To our knowledge, no other work
has yet reported the exact dimensions that are rogue for the XLM-R model.

Examining the findings, it is observed how the most outstanding outliers change
as the number of layers progresses. While dimension 588 is most prominent until
layer 9, after this point 741 begins to rise in value, becoming the dimension with
the biggest magnitude in the final layer.

7.1.2 Influence on similarity search

Investigating the main objective of this work, i.e. the influence of outlier dimensions
on similarity search, the Tatoeba task was evaluated on using XLM-R’s sentence
embeddings from layer 8. Analyzing the effect of outlier dimensions established for
this layer, it is found that their removal is beneficial for task performance. This is
in contrast to their effect on other tasks, where previous research has reported a
decrease in performance when such dimensions are discarded (see 3.3.2).

This indicates that such outliers may be useful for the model when performing
certain tasks, as they do not seem to disappear during fine-tuning (as likewise ob-
served in 6.5.2), but are not helpful in the sense of representational quality of the
resulting embeddings.

7.1.3 Redefining rogue dimensions

In the search for the key characteristics of dimensions, which harm the representa-
tional quality of sentence embeddings and therefore impair the similarity search, the
concept of a rogue dimension has been redefined.

The most intuitive definition, which is likewise the one assumed in previous re-
search, makes a dimension an outlier if its value significantly deviates from the norm,
i.e. if it exhibits exceptionally high magnitude. While the removal of such outliers
was found to improve similarity search, the reason for this is not rooted solely in the
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dimensions’ magnitude. It is rather the case that dimensions of high magnitudes
are simultaneously the ones making the embeddings anisotropic. This reasoning is
especially sensible in the context of similarity search, as an anisotropic embedding
space makes all representations highly similar to one another, making the search for
correct translation pairs more difficult. This defines the group of anisotropy-related
outliers, whose removal makes the sentence embeddings more isotropic and through
this improves the task performance.

Another group established to be harmful for similarity search was identified by
analyzing the embeddings of parallel Tatoeba sentences. Since they are aligned
translations of each other, their representations should ideally be as similar as pos-
sible. By removing each embedding dimension one by one and re-computing the
cosine similarity between the sentences, it was identified which of the removed di-
mensions caused the biggest increases in parallel cosine similarity. These dimensions
were found to neither be of exceptionally high magnitudes, nor being associated with
anisotropy. They therefore constitute their own separate group of similarity-harming
outliers.

7.1.4 Improving similarity search

Having identified two groups of dimensions which are rogue in the sense of being
harmful to similarity search, this information has been leveraged to improve the
performance on such tasks in a targeted manner. Removing all outliers from the
sentence embeddings, before evaluating on the similarity search tasks Tatoeba and
BUCC, score improvements of +9.74% and +6.2% could be achieved (see 6.5.1). This
improvement is accomplished by targeting only 15 out of 768 embedding dimensions.

The research of this thesis has shown characteristics which define dimensions af-
fecting cosine-based similarity search. These methods can in the future be used to
identify such outliers for other models and layers in order to push their performance
on similar tasks.

7.2 Future Work

7.2.1 Role of single languages and sentences

One point worth further investigations is how different languages and even different
sentences influence outliers. As observed in Chapter 5, not all languages exhibit
(magnitude-wise) outliers in the same dimensions, nor do they all reach the same
values: in dimension 588, one language’s embeddings on average reached a value of
around -16, while another language reported -14.4 (see 5.1.1).

Going even further, single sentences seem to be able to influence how pronounced
the value in such dimensions becomes: the same dimension 588 has shown how, in
a single language, one sentence can produce a value of almost -19, while another
sentence produces -12.8.

There might be some underlying patterns that cause this to happen, i.e. certain
language families or certain types of sentences scoring higher values in such dimen-
sions. A systematic analysis of this matter could give valuable insights on the entire
topic of rogue dimensions.

7.2.2 Other outlier criteria

This thesis has produced two groups of outliers for similarity search, which can
be identified by either probing anisotropy or analyzing cosine similarity changes in
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parallel data, if available. This does however not mean that these are the only di-
mensions able to affect task performance. In fact, Table 6.7 of section 6.3 shows, how
there are a few dimensions, whose removal improves the Tatoeba results, however
they do not fall under any of the two proposed categories.

An exhaustive list of such outliers could have been obtained by applying brute-
force search over all embedding dimensions, i.e. zeroing out each of the 768 dimen-
sions and running e.g. the Tatoeba task each time, in order to directly see, which
dimensions’ removal was beneficial. These dimensions could have then been ana-
lyzed on their properties, which may have revealed other criteria for task-affecting
outliers.

Since this was not possible due to computational constraints, it is a possibility for
future work to, for example, apply the above brute-force search method for obtaining
other criteria.

7.2.3 Revisiting similarity-harming outliers

The similarity-harming outliers established in 6.3.2 are effective in improving task
performance, however they do not exhibit a defining characteristic, as e.g. the
other group of outliers associated with anisotropy does. Their removal improves
the similarity between parallel data, implying that these dimensions are somewhat
harmful to the embeddings’ representational quality, but it remains unclear, why
exactly that is.
Possibly they exhibit another underlying characteristic, which makes them undesir-
able to keep. Finding it, if such distinctive cause exists, may in turn reveal other
outliers which the method proposed in 6.3.2 could not effectively capture.

7.2.4 Exploring different models and tasks

Lastly, a possibility for further research is to expand the insights of this work to other
models, model layers, and tasks. For instance, it would be of interest to test the
established outlier groups on tasks other than similarity search. In detail this means
to remove anisotropy-related and/or similarity-harming outliers from XLM-R’s layer
8 and perform inference on another NLP task. The outcome may be decreased per-
formance (as reported for other outliers by previous research, see 3.3.2), or even
improved performance as was seen with similarity search. Such investigations would
show the established outliers to either be exclusive to similarity search, or in the
other case universally affecting different tasks.

Naturally, the alternative outlier definition itself can also be extended to other
models and tasks. It may well be the case for other language models and other NLP
tasks that there exist certain dimensions, which are harmful to the performance.
Identifying those can help improve the results by targeting the right embedding
dimensions.
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Appendix

Appendix A

Figure 7.1: Cosine distance scores of sentence-rankings between results of original
and no-306 embeddings – a closeup view. (Reference: section 5.3.2)

Figure 7.2: Cosine distance scores of sentence-rankings between results of original
and no-588 embeddings – first 10 positions. (Reference: section 5.3.2)
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Appendix B

Sentences from all 36 Tatoeba xx-en pairs: their values in dimension 588 once
showing only language xx, once aligned together with their parallel en sentences.
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