Introduction to Information Retrieval http://informationretrieval.org

IIR 3: Dictionaries and tolerant retrieval

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-10

Overview

- Recap
- 2 Dictionaries
- Wildcard queries
- 4 Edit distance
- Spelling correction
- 6 Soundex

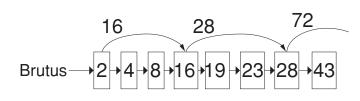
Outline

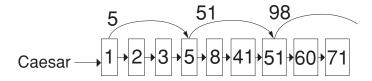
- Recap
- 2 Dictionaries
- Wildcard queries
- 4 Edit distance
- Spelling correction
- 6 Soundex

Type/token distinction

- Token an instance of a word or term occurring in a document
- Type an equivalence class of tokens
- In June, the dog likes to chase the cat in the barn.
- 12 word tokens, 9 word types

Problems in tokenization


- What are the delimiters? Space? Apostrophe? Hyphen?
- For each of these: sometimes they delimit, sometimes they don't.
- No whitespace in many languages! (e.g., Chinese)
- No whitespace in Dutch, German, Swedish compounds (Lebensversicherungsgesellschaftsangestellter)


Problems with equivalence classing

- A term is an equivalence class of tokens.
- How do we define equivalence classes?
- Numbers (3/20/91 vs. 20/3/91)
- Case folding

- Stemming, Porter stemmer
- Morphological analysis: inflectional vs. derivational
- Equivalence classing problems in other languages
 - More complex morphology than in English
 - Finnish: a single verb may have 12,000 different forms
 - Accents, umlauts

Skip pointers

Positional indexes

- Postings lists in a nonpositional index: each posting is just a docID
- Postings lists in a positional index: each posting is a docID and a list of positions
- Example query: "to₁ be₂ or₃ not₄ to₅ be₆"

```
TO, 993427:

$\left( \text{1:} \langle 7, \text{18, 33, 72, 86, 231} \rangle; \text{2:} \langle 1, 17, 74, 222, 255 \rangle; \text{4:} \langle 8, \text{16, 190, 429, 433} \rangle; \text{5:} \langle 363, \text{367} \rangle; \text{7:} \langle 13, 23, \text{191} \rangle; \text{...} \rangle

BE, \text{178239:} \langle \text{1:} \langle 17, \text{25} \rangle; \text{4:} \langle 17, \text{191, 291, 430, 434} \rangle; \text{5:} \langle 14, \text{19, 101} \rangle; \text{...} \rangle
```

Document 4 is a match!

Positional indexes

- With a positional index, we can answer phrase queries.
- With a positional index, we can answer proximity queries.

Take-away

Take-away

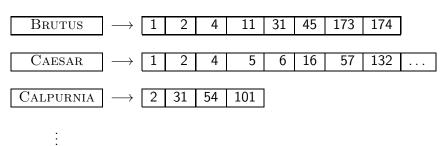
Recap

 Tolerant retrieval: What to do if there is no exact match between query term and document term

Take-away

- Tolerant retrieval: What to do if there is no exact match between query term and document term
- Wildcard queries

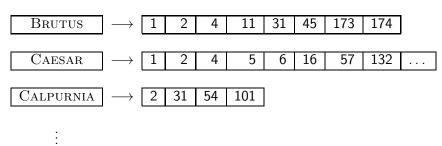
Take-away


- Tolerant retrieval: What to do if there is no exact match between query term and document term
- Wildcard queries
- Spelling correction

Outline

- Recap
- 2 Dictionaries
- Wildcard queries
- 4 Edit distance
- Spelling correction
- 6 Soundex

Inverted index


For each term t, we store a list of all documents that contain t.

dictionary postings

Inverted index

For each term t, we store a list of all documents that contain t.

dictionary postings

Dictionaries

 The dictionary is the data structure for storing the term vocabulary.

Dictionaries

- The dictionary is the data structure for storing the term vocabulary.
- Term vocabulary: the data

Dictionaries

- The dictionary is the data structure for storing the term vocabulary.
- Term vocabulary: the data
- Dictionary: the data structure for storing the term vocabulary

• For each term, we need to store a couple of items:

- For each term, we need to store a couple of items:
 - document frequency

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
 - . . .

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
 - . . .
- Assume for the time being that we can store this information in a fixed-length entry.

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
 - ...
- Assume for the time being that we can store this information in a fixed-length entry.
- Assume that we store these entries in an array.

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow
00 1 .	41.	4 1 .

space needed:

20 bytes 4 bytes

4 bytes

How do we look up a query term q_i in this array at query time? That is: which data structure do we use to locate the entry (row) in the array where q_i is stored?

Data structures for looking up term

Two main classes of data structures: hashes and trees

- Two main classes of data structures: hashes and trees
- Some IR systems use hashes, some use trees.

- Two main classes of data structures: hashes and trees
- Some IR systems use hashes, some use trees.
- Criteria for when to use hashes vs. trees:

- Two main classes of data structures: hashes and trees
- Some IR systems use hashes, some use trees.
- Criteria for when to use hashes vs. trees:
 - Is there a fixed number of terms or will it keep growing?

- Two main classes of data structures: hashes and trees.
- Some IR systems use hashes, some use trees.
- Criteria for when to use hashes vs. trees:
 - Is there a fixed number of terms or will it keep growing?
 - What are the relative frequencies with which various keys will be accessed?

- Two main classes of data structures: hashes and trees
- Some IR systems use hashes, some use trees.
- Criteria for when to use hashes vs. trees:
 - Is there a fixed number of terms or will it keep growing?
 - What are the relative frequencies with which various keys will be accessed?
 - How many terms are we likely to have?

Hashes

 Each vocabulary term is hashed into an integer, its row number in the array

Hashes

- Each vocabulary term is hashed into an integer, its row number in the array
- At query time: hash query term, locate entry in fixed-width array

Hashes

- Each vocabulary term is hashed into an integer, its row number in the array
- At query time: hash query term, locate entry in fixed-width array
- Pros: Lookup in a hash is faster than lookup in a tree.

Hashes

- Each vocabulary term is hashed into an integer, its row number in the array
- At query time: hash query term, locate entry in fixed-width array
- Pros: Lookup in a hash is faster than lookup in a tree.
 - Lookup time is constant.

- Each vocabulary term is hashed into an integer, its row number in the array
- At query time: hash query term, locate entry in fixed-width array
- Pros: Lookup in a hash is faster than lookup in a tree.
 - Lookup time is constant.
- Cons

- Each vocabulary term is hashed into an integer, its row number in the array
- At query time: hash query term, locate entry in fixed-width array
- Pros: Lookup in a hash is faster than lookup in a tree.
 - Lookup time is constant.
- Cons
 - no way to find minor variants (resume vs. résumé)

- Each vocabulary term is hashed into an integer, its row number in the array
- At query time: hash query term, locate entry in fixed-width array
- Pros: Lookup in a hash is faster than lookup in a tree.
 - Lookup time is constant.
- Cons
 - no way to find minor variants (resume vs. résumé)
 - no prefix search (all terms starting with automat)

- Each vocabulary term is hashed into an integer, its row number in the array
- At query time: hash query term, locate entry in fixed-width array
- Pros: Lookup in a hash is faster than lookup in a tree.
 - Lookup time is constant.
- Cons
 - no way to find minor variants (resume vs. résumé)
 - no prefix search (all terms starting with automat)
 - need to rehash everything periodically if vocabulary keeps growing

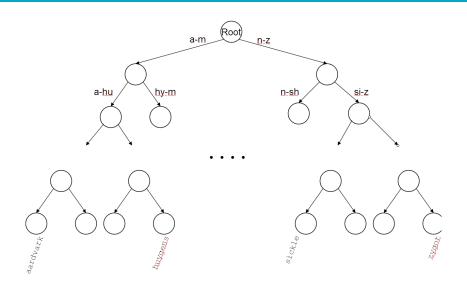
Trees

• Trees solve the prefix problem (find all terms starting with automat).

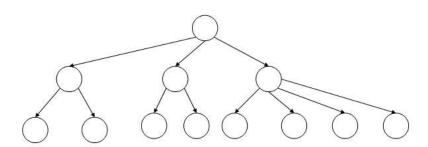
- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree

- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree
- Search is slightly slower than in hashes: $O(\log M)$, where M is the size of the vocabulary.

- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree
- Search is slightly slower than in hashes: $O(\log M)$, where M is the size of the vocabulary.
- $O(\log M)$ only holds for balanced trees.


- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree
- Search is slightly slower than in hashes: $O(\log M)$, where M is the size of the vocabulary.
- O(log M) only holds for balanced trees.
- Rebalancing binary trees is expensive.

- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree
- Search is slightly slower than in hashes: $O(\log M)$, where M is the size of the vocabulary.
- O(log M) only holds for balanced trees.
- Rebalancing binary trees is expensive.
- B-trees mitigate the rebalancing problem.


- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree
- Search is slightly slower than in hashes: $O(\log M)$, where M is the size of the vocabulary.
- O(log M) only holds for balanced trees.
- Rebalancing binary trees is expensive.
- B-trees mitigate the rebalancing problem.
- B-tree definition: every internal node has a number of children in the interval [a, b] where a, b are appropriate positive integers, e.g., [2, 4].

Dictionaries

Binary tree

B-tree

Outline

- Recap
- 2 Dictionaries
- Wildcard queries
- 4 Edit distance
- Spelling correction
- 6 Soundex

Wildcard queries

• mon*: find all docs containing any term beginning with mon

- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary: retrieve all terms t in the range: mon $\leq t <$ moo

- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary: retrieve all terms t in the range: mon < t < moo
- *mon: find all docs containing any term ending with mon

- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary: retrieve all terms t in the range: mon < t < moo
- *mon: find all docs containing any term ending with mon
 - Maintain an additional tree for terms backwards

- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary: retrieve all terms t in the range: mon < t < moo
- *mon: find all docs containing any term ending with mon
 - Maintain an additional tree for terms backwards
 - Then retrieve all terms t in the range: nom $\leq t <$ non

- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary: retrieve all terms t in the range: mon < t < moo
- *mon: find all docs containing any term ending with mon
 - Maintain an additional tree for terms backwards
 - Then retrieve all terms t in the range: nom $\leq t <$ non
- Result: A set of terms that are matches for wildcard query

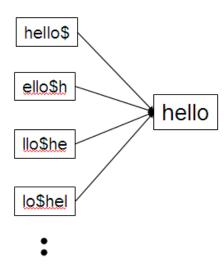
- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary: retrieve all terms t in the range: mon < t < moo
- *mon: find all docs containing any term ending with mon
 - Maintain an additional tree for terms backwards
 - Then retrieve all terms t in the range: nom $\leq t <$ non
- Result: A set of terms that are matches for wildcard query
- Then retrieve documents that contain any of these terms

Example: m*nchen

- Example: m*nchen
- We could look up m* and *nchen in the B-tree and intersect the two term sets.

- Example: m*nchen
- We could look up m* and *nchen in the B-tree and intersect the two term sets.
- Expensive

- Example: m*nchen
- We could look up m* and *nchen in the B-tree and intersect the two term sets.
- Expensive
- Alternative: permuterm index


- Example: m*nchen
- We could look up m* and *nchen in the B-tree and intersect the two term sets.
- Expensive
- Alternative: permuterm index
- Basic idea: Rotate every wildcard query, so that the * occurs at the end.

- Example: m*nchen
- We could look up m* and *nchen in the B-tree and intersect the two term sets.
- Expensive
- Alternative: permuterm index
- Basic idea: Rotate every wildcard query, so that the * occurs at the end.
- Store each of these rotations in the dictionary, say, in a B-tree

Permuterm index

• For term HELLO: add hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, and \$hello to the B-tree where \$ is a special symbol

Permuterm \rightarrow term mapping

Permuterm index

• For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$
 - For X*, look up \$X*

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$
 - For X*, look up \$X*
 - For *X, look up X\$*

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$
 - For X*, look up \$X*
 - For *X, look up X\$*
 - For *X*, look up X*

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$
 - For X*, look up \$X*
 - For *X, look up X\$*
 - For *X*, look up X*
 - For X*Y, look up Y\$X*

Permuterm index

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$
 - For X*, look up \$X*
 - For *X, look up X\$*
 - For *X*, look up X*
 - For X*Y, look up Y\$X*
 - Example: For hel*o, look up o\$hel*

Permuterm index

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$
 - For X*, look up \$X*
 - For *X, look up X\$*
 - For *X*, look up X*
 - For X*Y, look up Y\$X*
 - Example: For hel*o, look up o\$hel*
- Permuterm index would better be called a permuterm tree.

Permuterm index

- For HELLO, we've stored: hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
- Queries
 - For X, look up X\$
 - For X*, look up \$X*
 - For *X, look up X\$*
 - For *X*, look up X*
 - For X*Y, look up Y\$X*
 - Example: For hel*o, look up o\$hel*
- Permuterm index would better be called a permuterm tree.
- But permuterm index is the more common name.

Processing a lookup in the permuterm index

Rotate query wildcard to the right

Processing a lookup in the permuterm index

- Rotate query wildcard to the right
- Use B-tree lookup as before

Processing a lookup in the permuterm index

- Rotate query wildcard to the right
- Use B-tree lookup as before
- Problem: Permuterm more than quadruples the size of the dictionary compared to a regular B-tree. (empirical number)

k-gram indexes

More space-efficient than permuterm index

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters)
 occurring in a term

- More space-efficient than permuterm index
- Enumerate all character *k*-grams (sequence of *k* characters) occurring in a term
- 2-grams are called bigrams.

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters)
 occurring in a term
- 2-grams are called bigrams.
- Example: from April is the cruelest month we get the bigrams:
 \$a ap pr ri il \$\$ is \$\$ \$\$ th he e\$ \$c cr ru ue el le es st t\$\$ mo on nt h\$\$

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters)
 occurring in a term
- 2-grams are called bigrams.
- Example: from April is the cruelest month we get the bigrams: \$a ap pr ri il \$\$ is \$\$ \$t th he e\$ \$c cr ru ue el le es st t\$ \$m mo on nt h\$
- \$ is a special word boundary symbol, as before.

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters)
 occurring in a term
- 2-grams are called bigrams.
- Example: from April is the cruelest month we get the bigrams:
 \$a ap pr ri il |\$\$ is \$\$\$ the he e\$\$c cr ru ue el le es st t\$\$m mo on nt h\$\$
- \$ is a special word boundary symbol, as before.
- Maintain an inverted index from bigrams to the terms that contain the bigram

Postings list in a 3-gram inverted index

• Note that we now have two different types of inverted indexes

k-gram (bigram, trigram, . . .) indexes

- Note that we now have two different types of inverted indexes
- The term-document inverted index for finding documents based on a query consisting of terms

- Note that we now have two different types of inverted indexes
- The term-document inverted index for finding documents based on a query consisting of terms
- The k-gram index for finding terms based on a query consisting of k-grams

Query mon* can now be run as:\$m AND mo AND on

- Query mon* can now be run as:\$m AND mo AND on
- Gets us all terms with the prefix mon ...

- Query mon* can now be run as:
 \$m AND mo AND on
- Gets us all terms with the prefix mon . . .
- ... but also many "false positives" like MOON.

- Query mon* can now be run as:
 \$m AND mo AND on
- Gets us all terms with the prefix mon . . .
- ...but also many "false positives" like MOON.
- We must postfilter these terms against query.

- Query mon* can now be run as:
 \$m AND mo AND on
- Gets us all terms with the prefix mon . . .
- ...but also many "false positives" like MOON.
- We must postfilter these terms against query.
- Surviving terms are then looked up in the term-document inverted index.

- Query mon* can now be run as:
 \$m AND mo AND on
- Gets us all terms with the prefix mon . . .
- ...but also many "false positives" like MOON.
- We must postfilter these terms against query.
- Surviving terms are then looked up in the term-document inverted index.
- k-gram index vs. permuterm index

- Query mon* can now be run as:
 \$m AND mo AND on
- Gets us all terms with the prefix mon . . .
- ...but also many "false positives" like MOON.
- We must postfilter these terms against query.
- Surviving terms are then looked up in the term-document inverted index.
- k-gram index vs. permuterm index
 - k-gram index is more space efficient.

- Query mon* can now be run as:
 \$m AND mo AND on
- Gets us all terms with the prefix mon . . .
- ...but also many "false positives" like MOON.
- We must postfilter these terms against query.
- Surviving terms are then looked up in the term-document inverted index.
- k-gram index vs. permuterm index
 - k-gram index is more space efficient.
 - Permuterm index doesn't require postfiltering.

Exercise

• Google has very limited support for wildcard queries.

- Google has very limited support for wildcard queries.
- For example, this query doesn't work very well on Google: [gen* universit*]

- Google has very limited support for wildcard queries.
- For example, this query doesn't work very well on Google: [gen* universit*]
 - Intention: you are looking for the University of Geneva, but don't know which accents to use for the French words for university and Geneva.

- Google has very limited support for wildcard queries.
- For example, this query doesn't work very well on Google: [gen* universit*]
 - Intention: you are looking for the University of Geneva, but don't know which accents to use for the French words for university and Geneva.
- According to Google search basics, 2010-04-29: "Note that the * operator works only on whole words, not parts of words."

- Google has very limited support for wildcard queries.
- For example, this query doesn't work very well on Google: [gen* universit*]
 - Intention: you are looking for the University of Geneva, but don't know which accents to use for the French words for university and Geneva.
- According to Google search basics, 2010-04-29: "Note that the * operator works only on whole words, not parts of words."
- But this is not entirely true. Try [pythag*] and [m*nchen]

- Google has very limited support for wildcard queries.
- For example, this query doesn't work very well on Google: [gen* universit*]
 - Intention: you are looking for the University of Geneva, but don't know which accents to use for the French words for university and Geneva.
- According to Google search basics, 2010-04-29: "Note that the * operator works only on whole words, not parts of words."
- But this is not entirely true. Try [pythag*] and [m*nchen]
- Exercise: Why doesn't Google fully support wildcard queries?

Processing wildcard queries in the term-document index

 Problem 1: we must potentially execute a large number of Boolean queries.

Processing wildcard queries in the term-document index

- Problem 1: we must potentially execute a large number of Boolean queries.
- Most straightforward semantics: Conjunction of disjunctions

Processing wildcard queries in the term-document index

- Problem 1: we must potentially execute a large number of Boolean queries.
- Most straightforward semantics: Conjunction of disjunctions
- For [gen* universit*]: geneva university OR geneva université OR genève university OR genève université OR general universities OR

Processing wildcard queries in the term-document index

- Problem 1: we must potentially execute a large number of Boolean queries.
- Most straightforward semantics: Conjunction of disjunctions
- For [gen* universit*]: geneva university OR geneva université
 OR genève university OR genève université OR general universities OR . . .
- Very expensive

- Problem 1: we must potentially execute a large number of Boolean queries.
- Most straightforward semantics: Conjunction of disjunctions
- For [gen* universit*]: geneva university OR geneva université
 OR genève university OR genève université OR general universities OR . . .
- Very expensive
- Problem 2: Users hate to type.

- Problem 1: we must potentially execute a large number of Boolean queries.
- Most straightforward semantics: Conjunction of disjunctions
- For [gen* universit*]: geneva university OR geneva université OR genève university OR genève université OR general universities OR . . .
- Very expensive
- Problem 2: Users hate to type.
- If abbreviated queries like [pyth* theo*] for [pythagoras' theorem] are allowed, users will use them a lot.

- Problem 1: we must potentially execute a large number of Boolean queries.
- Most straightforward semantics: Conjunction of disjunctions
- For [gen* universit*]: geneva university OR geneva université OR genève university OR genève université OR general universities OR . . .
- Very expensive
- Problem 2: Users hate to type.
- If abbreviated queries like [pyth* theo*] for [pythagoras' theorem] are allowed, users will use them a lot.
- This would significantly increase the cost of answering queries.

- Problem 1: we must potentially execute a large number of Boolean queries.
- Most straightforward semantics: Conjunction of disjunctions
- For [gen* universit*]: geneva university OR geneva université OR genève university OR genève université OR general universities OR . . .
- Very expensive
- Problem 2: Users hate to type.
- If abbreviated queries like [pyth* theo*] for [pythagoras' theorem] are allowed, users will use them a lot.
- This would significantly increase the cost of answering queries.
- Somewhat alleviated by Google Suggest

Outline

- Recap
- 2 Dictionaries
- Wildcard queries
- 4 Edit distance
- Spelling correction
- 6 Soundex

Edit distance

• The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .

- The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .
- Levenshtein distance: The admissible basic operations are insert, delete, and replace

- The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .
- Levenshtein distance: The admissible basic operations are insert, delete, and replace
- Levenshtein distance dog-do: 1

- The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .
- Levenshtein distance: The admissible basic operations are insert, delete, and replace
- Levenshtein distance dog-do: 1
- Levenshtein distance cat-cart: 1

- The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .
- Levenshtein distance: The admissible basic operations are insert, delete, and replace
- Levenshtein distance dog-do: 1
- Levenshtein distance cat-cart: 1
- Levenshtein distance cat-cut: 1

- The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .
- Levenshtein distance: The admissible basic operations are insert, delete, and replace
- Levenshtein distance dog-do: 1
- Levenshtein distance cat-cart: 1
- Levenshtein distance cat-cut: 1
- Levenshtein distance cat-act: 2

- The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .
- Levenshtein distance: The admissible basic operations are insert, delete, and replace
- Levenshtein distance dog-do: 1
- Levenshtein distance cat-cart: 1
- Levenshtein distance cat-cut: 1
- Levenshtein distance cat-act: 2
- Damerau-Levenshtein distance cat-act: 1

- The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2 .
- Levenshtein distance: The admissible basic operations are insert, delete, and replace
- Levenshtein distance dog-do: 1
- Levenshtein distance cat-cart: 1
- Levenshtein distance cat-cut: 1
- Levenshtein distance cat-act: 2
- Damerau-Levenshtein distance cat-act: 1
- Damerau-Levenshtein includes transposition as a fourth possible operation.

Levenshtein distance: Computation

		f	а	S	t
	0	1	2	3	4
С	1	1	2	3	4
а	2	2	1	2	3
t	3	3	2	2	2
S	4	4	3	2	3

Spelling correction

```
LEVENSHTEINDISTANCE(s_1, s_2)
     for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for j \leftarrow 0 to |s_2|
  4 do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
     do for j \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
  9
                else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
 10
      return m[|s_1|, |s_2|]
Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
```

```
LEVENSHTEINDISTANCE(s_1, s_2)
     for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for j \leftarrow 0 to |s_2|
  4 do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
     do for j \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
                else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
  9
 10
      return m[|s_1|, |s_2|]
Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
```

```
LEVENSHTEINDISTANCE(s_1, s_2)
     for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for j \leftarrow 0 to |s_2|
  4 do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
     do for j \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
  9
                else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
 10
      return m[|s_1|, |s_2|]
Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
```

```
LEVENSHTEINDISTANCE(s_1, s_2)
     for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for j \leftarrow 0 to |s_2|
  4 do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
     do for j \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
  9
                else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
 10
      return m[|s_1|, |s_2|]
Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
```

```
LEVENSHTEINDISTANCE(s_1, s_2)
     for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for j \leftarrow 0 to |s_2|
  4 do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
     do for j \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
  9
                else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
 10
      return m[|s_1|, |s_2|]
Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
```

(cost 0)

Levenshtein distance: Example

			f		а		S		t	
		0	1	1	2	2	3	3	4	4
С		1	1	2	2	3	3	4	4	5
		1	2	1	2	2	3	3	4	4
а		2	2	2	1	3	3	4	4	5
		2	3	2	3	1	2	2	3	3
t		3	3	3	3	2	2	3	2	4
		3	4	3	4	2	3	2	3	2
S		4	4	4	4	3	2	3	3	3
		4	5	4	5	3	4	2	3	3

Each cell of Levenshtein matrix

cost of getting here from	cost of getting here				
my upper left neighbor	from my upper neighbor				
(copy or replace)	(delete)				
	the minimum of the				
cost of getting here from	three possible "move-				
my left neighbor (insert)	ments"; the cheapest				
	way of getting here				

Levenshtein distance: Example

			f		а		S		t	
		0	1	1	2	2	3	3	4	4
С		1	1	2	2	3	3	4	4	5
		1	2	1	2	2	3	3	4	4
а		2	2	2	1	3	3	4	4	5
		2	3	2	3	1	2	2	3	3
t		3	3	3	3	2	2	3	2	4
		3	4	3	4	2	3	2	3	2
S		4	4	4	4	3	2	3	3	3
		4	5	4	5	3	4	2	3	3

 Optimal substructure: The optimal solution to the problem contains within it subsolutions, i.e., optimal solutions to subproblems.

- Optimal substructure: The optimal solution to the problem contains within it subsolutions, i.e., optimal solutions to subproblems.
- Overlapping subsolutions: The subsolutions overlap. These subsolutions are computed over and over again when computing the global optimal solution in a brute-force algorithm.

- Optimal substructure: The optimal solution to the problem contains within it subsolutions, i.e., optimal solutions to subproblems.
- Overlapping subsolutions: The subsolutions overlap. These subsolutions are computed over and over again when computing the global optimal solution in a brute-force algorithm.
- Subproblem in the case of edit distance: what is the edit distance of two prefixes

- Optimal substructure: The optimal solution to the problem contains within it subsolutions, i.e., optimal solutions to subproblems.
- Overlapping subsolutions: The subsolutions overlap. These subsolutions are computed over and over again when computing the global optimal solution in a brute-force algorithm.
- Subproblem in the case of edit distance: what is the edit distance of two prefixes
- Overlapping subsolutions: We need most distances of prefixes
 3 times this corresponds to moving right, diagonally, down.

 As above, but weight of an operation depends on the characters involved.

- As above, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors, e.g., m more likely to be mistyped as n than as q.

- As above, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors, e.g., m more likely to be mistyped as n than as q.
- Therefore, replacing m by n is a smaller edit distance than by q.

- As above, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors, e.g., m more likely to be mistyped as n than as q.
- Therefore, replacing m by n is a smaller edit distance than by q.
- We now require a weight matrix as input.

- As above, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors, e.g., m more likely to be mistyped as n than as q.
- Therefore, replacing m by n is a smaller edit distance than by q.
- We now require a weight matrix as input.
- Modify dynamic programming to handle weights

Using edit distance for spelling correction

Using edit distance for spelling correction

• Given query, first enumerate all character sequences within a preset (possibly weighted) edit distance

Using edit distance for spelling correction

- Given query, first enumerate all character sequences within a preset (possibly weighted) edit distance
- Intersect this set with our list of "correct" words

Using edit distance for spelling correction

- Given query, first enumerate all character sequences within a preset (possibly weighted) edit distance
- Intersect this set with our list of "correct" words
- Then suggest terms in the intersection to the user.

Using edit distance for spelling correction

- Given query, first enumerate all character sequences within a preset (possibly weighted) edit distance
- Intersect this set with our list of "correct" words
- Then suggest terms in the intersection to the user.
- ullet \rightarrow exercise in a few slides

Exercise

- Compute Levenshtein distance matrix for OSLO SNOW
- What are the Levenshtein editing operations that transform cat into catcat?

Di	ctionaries	Wildcard queries	Edit distanc	e Spelling c	orrection Sou
		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1 1				
S	2 2				
I	3 3				
0	4 4				

Di	ctionaries	Wildcard queries	Edit distanc	e Spelling c	orrection Sou
		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	$\frac{1}{1}$	1 2 ?			
S	2 2				
I	3 3				
0	4 4				

Di	ctionaries	V	Vildcard	queries	Edit distance		e S	pelling c	orrection	Soı
			S		r	n		0		V
	0	-	1 1		2	2	3	3 3		4
0	1 1	-	2	2 1						
S	2 2	-								
I	3 3	-								
0	4	-								

Di	ctionaries	,	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
			S		r	n		0		V
	0	_	1	1		2	3	3	4	4
0	$\frac{1}{1}$	_	1 2	2 1	2 2	3 ?				
S	2 2	_								
I	3 3	_								
0	4	_								

Di	ctionaries	Wildcard queries	Edit distanc	e Spelling c	orrection Sou
		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1 1	1 2 2 1	2 3 2 2		
s	2 2				
I	3 3				
0	4 4				

Di	ctionaries	Wildcard queries	Edit distand	e Spelling co	orrection Sou
		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1 1	1 2 2 1	2 3 2 2	2 4 3 ?	
S	2 2				
I	3 3				
0	4 4				

Di	ctionarie	es	Wildcard	l queries	Edit distance		e S	pelling c	orrection S	
			S		r	n		0		٧
	_	0	1	1		2	3	3	4	4
0		1 1	<u>1</u> 2	2 1	2 2	3 2	3	2		
S		2								
I		3								
0		4								

Di	ctionari	es	Wildcard	I queries	Edi	t distanc	e S	Spelling correction		
			S		r	n		0		V
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	<u>4</u> 3	<u>5</u>
S		2								
I		3								
0		4								

Di	ictionar	ies	Wildcard	l queries	Edi	t distanc	e S	Spelling correction		
			S		r	n		0		V
		0	1	1		2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S		2								
I	_	3								
o		4								

Di	ictionaries	Wildcard queries	Edit distand	e Spelling c	orrection Sou
		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1 1	1 2 2 1	2 3 2 2	2 4 3 2	4 5 3 3
S	2 2	1 2 3 ?			
I	3 3				
o	4 4				

Di	ctionaries	,	Wildcard queries		Edit distance		e S	pelling c	orrection Sc	
			S		r	n		0		٧
)	1	1	2	2	3	3	4	4
0	1	<u>l</u>	2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S		2	<u>1</u> 3	2 1						
I		3								
0		1								

Di	ctionar	ries	Wildcard	l queries	Edit distance		e S	pelling c	orrection	Sou
			S		ı	n		0		V
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S		2	<u>1</u> 3	2 1	2 2	?				
-		3								
0		4								

Di	ctionari	es	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
			9	5	r	ı	()	V	V
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	4 3	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2				
		3								
0		4								

Di	ctionar	ies	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
			:	S	ı	า	()	V	V
		0	1	1	2	2	3	3	4	4
0		1	2	2 1	2 2	3 2	3	2	4 3	5 3
S		2	3	2 1	2 2	3 2	3 3	?		
-		3								
0		4								

Di	ctionar	ies	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
				S	r	ı	()	V	V
		0	1	1	2	2	3	3	4	4
0	-	1	<u>1</u> 2	2 1	2 2	3 2	3	2	4 3	5 3
S	-	2	3	2 1	2 2	3 2	3	3		
		3								
0		4								

Di	ctiona	ries	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Soı
			:	S	r	า	(0	V	٧
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	4 3	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	?
-		3								
0		4								

Di	ctionar	ies	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
			9	S	r	1	(0	V	٧
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	4 3	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I		3								
o		4								

Di	ctionarie	s	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
			Ş	5	r	า	()	V	V
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S		2 2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
		3	3 4	?						
0		4								

Di	ctionar	ies	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Soı
			9	S	r	า	()	V	٧
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	4 3	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I	_	3	3 4	2						
0		4								

Di	ctionar	ies	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Soı
			9	S	r	ı	()	V	٧
		0	1	1		2	3	3	4	4
0	-	1	<u>1</u> 2	2 1	2 2	3 2	3	2	4 3	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I		3	3 4	2	3	?				
0		4								

D	ictiona	ries	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Soı
			9	S	ı	ı	(0	V	٧
		0	1	1	2	2	3	3	4	4
o		1	<u>1</u> 2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I	_	3	3 4	2	3	3 2				
o		4								

Di	ctionaries	,	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Soı
			9	5	r	ı	()	V	٧
	0	-	1	1		2	3	3	4	4
0	1 1	_	2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S	2 2		<u>1</u> 3	2 1	2 2	3 2	3 3	3	3 4	3
I	3	_	3 4	2	3	3 2	3 3	?		
0	4									

Die	ctionar	ries	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
				S	ı	ı	()	V	V
	_	0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I		3	3 4	2	3	3 2	3	3		
0		4								

Di	ctionari	es	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Soı
			9	5	r	ı	()	V	V
		0	1	1		2	3	3	4	4
0		1	1 2	2 1	2 2	3 2	3	2	<u>4</u> 3	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I		3	3 4	2	3	3 2	3	3	4	?
0		4								

D	ictiona	ries	Wildcard	l queries	Edi	t distanc	e S	2 4 4 5 3 2 3 3 3 3 4 3 3 4 3		
				S		n		0		٧
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3			5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3			3
I		3	3 4	2	3	3 2	3	3	4	4
o		4								

Di	ctionarie	es	Wildcard	l queries	Edi	t distanc	e S	2 4 5 3 2 3 3 3 4 4 3 3 4 4 4 4		
			S		r	n		0		٧
	_	0	1	1		2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3			
S		2	3	2 1	2 2	3 2	3			
I		3	3 4	2	3	3 2	3	3	4 4	4
0		4	4 5	3						

Di	ctionari	es	Wildcard	l queries	Edi	t distanc	e S	2 4 5 3 2 3 3 3 3 3 4 3 3 3 4 3			
				S		r	n		0		٧
		0	1	1		2	3	3	4	4	
0		1	<u>1</u> 2	2 1	2 2	3 2	3				
S		2	<u>1</u> 3	2 1	2 2	3 2	3				
I		3	3 4	2	3	3 2	3	3	4	4	
0		4	4 5	3							

Di	ctionar	ies	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Sou
			S		r	n		0		V
		0	1	1	2	2	3	3	4	4
0		1	1 2	2 1	2 2	3 2	3	2	4 3	5 3
S		2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I		3	3 4	2	3	3 2	3	3	4	4
0		4	4 5	3	3 4	3				

Di	ictiona	ries	Wildcard	l queries	Edi	t distanc	e S	2 4 5 3 2 3 3 3 4 3 3 4 4 3 3 4 4		
			S		r	n		0		٧
	_	0	1	1	2	2	3	3	4	4
О	_	1 1	1 2	2 1	2 2	3 2	3			
S	<u> </u>	2	1	2	2	3	3	3	3	
		2	3	1	2	2	3	3	4	3
∥ ,		3	3	2	2	3	3	4	4	4
'		3	4	2	3	2	3	3	4	4
		4	4	3	3	3				
0		4	5	3	4	3				

	Die	ctionar	ries	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection	Soı		
						S		ı	n		0		٧
			0	1	1	2	2	3	3	4	4		
C)		1	2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3		
9	5		2	3	2 1	2 2	3 2	3	3	3 4	3		
			3	3 4	2	3	3 2	3 3	3	4	4		
c)		4	4 5	3	$\frac{3}{4}$	3	2	7				

Di	ctionaries	s '	Wildcard	l queries	Edi	t distanc	e S	pelling c	orrection S	
			S		r	n		0		V
		0	1	1	2	2	3	3	4	4
0		1 1	2	2 1	2 2	3 2	3	2	<u>4</u> 3	5 3
s	II ——	2 2	3	2 1	2 2	3 2	3 3	3	3 4	3
I	II ——	3	3 4	2	3	3 2	3 3	3	4 4	4
0	II ———	4	4	3	3	3	2	4		

Die	ctionar	ries	Wildcard	l queries	Edi	t distanc	c e S	pelling c	orrection	Sou
			9	5	r	1	()	V	V
		0	1	1		2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
S	_	2	<u>1</u> 3	2 1	2 2	3 2	3	3	3 4	3
I	_	3	3 4	2	3	3 2	3 3	3	4	4
0		4	4 5	3	3 4	3	4	2	4 3	5 ?

Di	ctionar	ies	Wildcard	l queries	Edi	t distand	e S	pelling c	orrection	Sou
			9	S	r	1	()	V	V
	_	0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	3	2	⁴ / ₃	5 3
s		2	<u>1</u> 3	2 1	2 2	3 2	3	3	<u>3</u> 4	3
I		3	3 4	2	3	3 2	3	3	4	4
0		4	4 5	3	3 4	3	4	<u>4</u> <u>2</u>	4 3	5 3

	Dio	ctionar	ies	Wildcard	l queries	Edi	t distanc	e S	pelling co	orrection	Soun
				9	5	r	ı	()	V	V
		-	0	1	1	2	2	3	3	4	4
	^		1	1	2	2	3	2	4	4	5
	0		1	2	1	2	2	3	2	3	3
I			2	1	2	2	3	3	3	3	4
	S		2	3	1	2	2	3	3	4	3
	ı		3	3	2	2	3	3	4	4	4
	ı		3	4	2	3	2	3	3	4	4
Ī			4	4	3	3	3	2	4	4	5
	0	-	4	5	3	4	3	4	2	3	3

Die	ctionar	ries	Wildcard	l queries	Edi	t distanc	e S	pelling co	orrection	Soı
			:	5	r	ı	()	٧	٧
		0	1	1	2	2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
ı		3	3	2	2	3	3	4	4	4
1		3	4	2	3	2	3	3	4	4
		4	4	3	3	3	2	4	4	5
0		4	5	3	4	3	4	2	3	3

How do I read out the editing operations that transform OSLO into SNOW ?

Di	ctionar	ies	Wildcard	d queries	Edi	t distanc	e S	pelling co	orrection	Soun
			9	S	r	า	()	١	٧
		0	1	1	2	2	3	3	4	4
0		1	1	2	2	3	2	4	4	5
		1	2	1	2	2	3	2	3	3
S		2	$\frac{1}{2}$	2	2	3	3	3	3	4
		2	3	1	2	2	3	3	4	3
lı		3	_3	2	_2	3	3	4	4	4
		3	4	2	3	2	3	3	4	4
0		4	4	3	3	3	2	4	4	5
		4	5	3	4	3	4	2	3	3

W

operation | input | output

*

insert

cost

Di	ctionar	ies	Wildcard	l queries	Edi	t distand	e Sp	pelling co	rrection	Sound
			:	5	r	1	(0	V	V
		0	1	1	2	2	3	3	4	4
0		1	<u>1</u> 2	2 1	2 2	3 2	2 3	2	<u>4</u> 3	5 3
S		2	3	2 1	2 2	3 2	3	3	3 4	3
ı		3	3 4	2	3	3 2	3 3	3	4	4
0	_	4	<u>4</u> 5	3	3 4	3	4	2	4 3	5 3

cost	operation	input	output
0	(copy)	0	0
1	insert	*	W

Dio	ctionar	ies	Wildcard	l queries	Edit	distance	: Spe	elling corr	ection	Sounde
			:	S	ı	n	(0	٧	٧
		0	1	1	2	2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
1		3	4	2	3	2	3	3	4	4
		4	4	3	3	3	2	4	4	5
0		4	5	3	4	3	4	2	3	3

	cost	operation	input	output
_	1	replace	I	n
	0	(copy)	0	0
	1	insert	*	W

Di	ctionar	ries	Wildcard	queries	Edit	distance	Spel	ling corre	ction	Soundex
			:	S	r	ı	()	١	٧
		0	_	1		2	3	3	4	4
		0	1	_				_		
0		1	_1	2	2	3	2	4	4	5
O		1	2	1	2	2	3	2	3	3
S		2	1	2	2	3	3	3	3	4
5		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
		3	4	2	3	2	3	3	4	4
0		4	4	3	3	3	2	4	4	5
U		4	5	3	4	3	4	2	3	3

cost	operation	input	output
0	(copy)	S	S
1	replace	1	n
0	(copy)	0	0
1	insert	*	W

Di	ctionaries V	Vildcard queries	Edit distance	Spelling correct	ion Soundex
		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1 1	1 2 2 1	2 3 2 2	2 4 3 2	4 5 3 3
S	2 2	1 2 3 1	2 3 2 2	3 3 3 3	3 4 4 3
ı	3 3	3 2 4 2	2 3 3 2	3 4 3 3	4 4 4
0	4 4	4 3 5 3	3 3 4 3	2 4 4 2	4 5 3 3

cost	operation	input	output
1	delete	0	*
0	(copy)	S	S
1	replace	I	n
0	(copy)	0	0
1	insert	*	W

		(2	ā	a	i	t	(;	ā	a	i	į
	 0	1	1	2	2	3	3	4	4	5	5	6	6
С	1	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4	6 5	7 5
а	2	3	1	0 2	2 0	2 1	3 1	3 2	2	3	5 3	5 4	6 4
t	3	3 4	2	3	1	2	0	2 1	3 1	3 2	2	3	5 3

			(C		a	•	t	(á	a	1	t
		0	1	1	2	2	3	3	4	4	5	5	6	6
С		1 1	0 2	0	2 1	3 1	3 2	2	3	5 3	5 4	6 4	6 5	5
а	_	2 2	3	1	2	0	2 1	3 1	3 2	2	3	5 3	5 4	6 4
t		3	3 4	2	3	1	2	2 0	2 1	3 1	3 2	2	3	5 3

cost	operation	input	output
1	insert	*	С
1	insert	*	а
1	insert	*	t
0	(copy)	С	С
0	(copy)	а	а
0	(copy)	t	t

			(C	á	a	į	ţ	(á	a	1	t
		0	1	1	2	2	3	3	4	4	5	5	6	6
С		1 1	2	0	2 1	3 1	3 2	2	3	5 3	5 4	6 4	6 5	5
а	_	2 2	3	1	<u>0</u> 2	2 0	2 1	3 1	3 2	2	3	5 3	5 4	6 4
t		3	3 4	2	3	1 1	0 2	2 0	2 1	3 1	3 2	2	3	5 3

cost	operation	input	output
0	(copy)	С	С
1	insert	*	а
1	insert	*	t
1	insert	*	С
0	(copy)	а	а
0	(copy)	t	t

			(C	ā	a	į	ţ	(á	a	1	t
	_	0	1	1	2	2	3	3	4	4	5	5	6	6
С	-	1 1	0 2	0	2 1	3 1	3 2	2	3	5 3	5 4	6 4	6 5	5
а	_	2	3	1	0 2	0	2 1	3 1	3 2	2	3	5 3	5 4	6 4
t	_	3	3 4	2	3	1 1	2	2 0	2 1	3 1	3 2	2	3	5 3

cost	operation	input	output
0	(copy)	С	С
0	(copy)	а	а
1	insert	*	t
1	insert	*	С
1	insert	*	а
0	(copy)	t	t

			(C	ā	Э	i	ţ	(á	a	1	t
	_	0	1	1	2	2	3	3	4	4	5	5	6	6
С	_	1 1	0 2	0	2 1	3 1	3 2	2	3	5 3	5 4	6 4	6 5	7 5
а	_	2 2	3	1	0 2	0	2 1	3 1	3 2	2	3	5 3	5 4	6 4
t	_	3	3 4	2	3	1 1	0 2	0	2 1	3 1	3 2	2	3 3	5 3

cost	operation	input	output
0	(copy)	С	С
0	(copy)	а	а
0	(copy)	t	t
1	insert	*	С
1	insert	*	а
1	insert	*	t

Outline

- Recap
- 2 Dictionaries
- Wildcard queries
- 4 Edit distance
- Spelling correction
- 6 Soundex

Two principal uses

- Two principal uses
 - Correcting documents being indexed

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods for spelling correction

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods for spelling correction
- Isolated word spelling correction

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods for spelling correction
- Isolated word spelling correction
 - Check each word on its own for misspelling

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods for spelling correction
- Isolated word spelling correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g., an asteroid that fell form the sky

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods for spelling correction
- Isolated word spelling correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g.,
 an asteroid that fell form the sky
- Context-sensitive spelling correction

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods for spelling correction
- Isolated word spelling correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g.,
 an asteroid that fell form the sky
- Context-sensitive spelling correction
 - Look at surrounding words

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods for spelling correction
- Isolated word spelling correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g.,
 an asteroid that fell form the sky
- Context-sensitive spelling correction
 - Look at surrounding words
 - Can correct form/from error above

Correcting documents

Correcting documents

• We're not interested in interactive spelling correction of documents (e.g., MS Word) in this class.

Correcting documents

- We're not interested in interactive spelling correction of documents (e.g., MS Word) in this class.
- In IR, we use document correction primarily for OCR'ed documents. (OCR = optical character recognition)

Correcting documents

- We're not interested in interactive spelling correction of documents (e.g., MS Word) in this class.
- In IR, we use document correction primarily for OCR'ed documents. (OCR = optical character recognition)
- The general philosophy in IR is: don't change the documents.

Correcting queries

• First: isolated word spelling correction

- First: isolated word spelling correction
- Premise 1: There is a list of "correct words" from which the correct spellings come.

- First: isolated word spelling correction
- Premise 1: There is a list of "correct words" from which the correct spellings come.
- Premise 2: We have a way of computing the distance between a misspelled word and a correct word.

- First: isolated word spelling correction
- Premise 1: There is a list of "correct words" from which the correct spellings come.
- Premise 2: We have a way of computing the distance between a misspelled word and a correct word.
- Simple spelling correction algorithm: return the "correct" word that has the smallest distance to the misspelled word.

- First: isolated word spelling correction
- Premise 1: There is a list of "correct words" from which the correct spellings come.
- Premise 2: We have a way of computing the distance between a misspelled word and a correct word.
- Simple spelling correction algorithm: return the "correct" word that has the smallest distance to the misspelled word.
- Example: *information* → *information*

- First: isolated word spelling correction
- Premise 1: There is a list of "correct words" from which the correct spellings come.
- Premise 2: We have a way of computing the distance between a misspelled word and a correct word.
- Simple spelling correction algorithm: return the "correct" word that has the smallest distance to the misspelled word.
- Example: information → information
- For the list of correct words, we can use the vocabulary of all words that occur in our collection.

Correcting queries

- First: isolated word spelling correction
- Premise 1: There is a list of "correct words" from which the correct spellings come.
- Premise 2: We have a way of computing the distance between a misspelled word and a correct word.
- Simple spelling correction algorithm: return the "correct" word that has the smallest distance to the misspelled word.
- Example: information → information
- For the list of correct words, we can use the vocabulary of all words that occur in our collection.
- Why is this problematic?

Alternatives to using the term vocabulary

Alternatives to using the term vocabulary

• A standard dictionary (Webster's, OED etc.)

Alternatives to using the term vocabulary

- A standard dictionary (Webster's, OED etc.)
- An industry-specific dictionary (for specialized IR systems)

Alternatives to using the term vocabulary

- A standard dictionary (Webster's, OED etc.)
- An industry-specific dictionary (for specialized IR systems)
- The term vocabulary of the collection, appropriately weighted

Distance between misspelled word and "correct" word

Several alternatives

- Several alternatives
- Edit distance and Levenshtein distance

- Several alternatives
- Edit distance and Levenshtein distance
- Weighted edit distance

- Several alternatives
- Edit distance and Levenshtein distance
- Weighted edit distance
- k-gram overlap

Spelling correction

 Now that we can compute edit distance: how to use it for isolated word spelling correction – this is the last slide in this section.

- Now that we can compute edit distance: how to use it for isolated word spelling correction – this is the last slide in this section.
- k-gram indexes for isolated word spelling correction.

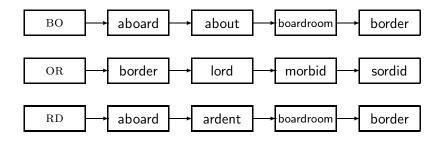
- Now that we can compute edit distance: how to use it for isolated word spelling correction – this is the last slide in this section.
- k-gram indexes for isolated word spelling correction.
- Context-sensitive spelling correction

- Now that we can compute edit distance: how to use it for isolated word spelling correction – this is the last slide in this section.
- k-gram indexes for isolated word spelling correction.
- Context-sensitive spelling correction
- General issues

k-gram indexes for spelling correction

• Enumerate all k-grams in the query term

- Enumerate all k-grams in the query term
- Example: bigram index, misspelled word bordroom


- Enumerate all k-grams in the query term
- Example: bigram index, misspelled word bordroom
- Bigrams: bo, or, rd, dr, ro, oo, om

- Enumerate all k-grams in the query term
- Example: bigram index, misspelled word bordroom
- Bigrams: bo, or, rd, dr, ro, oo, om
- Use the *k*-gram index to retrieve "correct" words that match query term *k*-grams

- Enumerate all k-grams in the query term
- Example: bigram index, misspelled word bordroom
- Bigrams: bo, or, rd, dr, ro, oo, om
- Use the *k*-gram index to retrieve "correct" words that match query term *k*-grams
- Threshold by number of matching k-grams

- Enumerate all k-grams in the query term
- Example: bigram index, misspelled word bordroom
- Bigrams: bo, or, rd, dr, ro, oo, om
- Use the k-gram index to retrieve "correct" words that match query term k-grams
- Threshold by number of matching k-grams
- E.g., only vocabulary terms that differ by at most 3 k-grams

k-gram indexes for spelling correction: bordroom

Context-sensitive spelling correction

• Our example was: an asteroid that fell form the sky

- Our example was: an asteroid that fell form the sky
- How can we correct form here?

- Our example was: an asteroid that fell form the sky
- How can we correct form here?
- One idea: hit-based spelling correction

- Our example was: an asteroid that fell form the sky
- How can we correct form here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term

- Our example was: an asteroid that fell form the sky
- How can we correct form here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich

- Our example was: an asteroid that fell form the sky
- How can we correct form here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich
 - Now try all possible resulting phrases as queries with one word "fixed" at a time

- Our example was: an asteroid that fell form the sky
- How can we correct form here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich
 - Now try all possible resulting phrases as queries with one word "fixed" at a time
 - Try query "flea form munich"

- Our example was: an asteroid that fell form the sky
- How can we correct *form* here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich
 - Now try all possible resulting phrases as queries with one word "fixed" at a time
 - Try query "flea form munich"
 - Try query "flew from munich"

- Our example was: an asteroid that fell form the sky
- How can we correct *form* here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich
 - Now try all possible resulting phrases as queries with one word "fixed" at a time
 - Try query "flea form munich"
 - Try query "flew from munich"
 - Try query "flew form munch"

- Our example was: an asteroid that fell form the sky
- How can we correct form here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich
 - Now try all possible resulting phrases as queries with one word "fixed" at a time
 - Try query "flea form munich"
 - Try query "flew from munich"
 - Try query "flew form munch"
 - The correct query "flew from munich" has the most hits.

- Our example was: an asteroid that fell form the sky
- How can we correct form here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich
 - Now try all possible resulting phrases as queries with one word "fixed" at a time
 - Try query "flea form munich"
 - Try query "flew from munich"
 - Try query "flew form munch"
 - The correct query "flew from munich" has the most hits.
- Suppose we have 7 alternatives for flew, 20 for form and 3 for munich, how many "corrected" phrases will we enumerate?

Context-sensitive spelling correction

• The "hit-based" algorithm we just outlined is not very efficient.

Context-sensitive spelling correction

- The "hit-based" algorithm we just outlined is not very efficient.
- More efficient alternative: look at "collection" of queries, not documents

General issues in spelling correction

User interface

- User interface
 - automatic vs. suggested correction

- User interface
 - automatic vs. suggested correction
 - Did you mean only works for one suggestion.

- User interface
 - automatic vs. suggested correction
 - Did you mean only works for one suggestion.
 - What about multiple possible corrections?

- User interface
 - automatic vs. suggested correction
 - Did you mean only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs. powerful UI

- User interface
 - automatic vs. suggested correction
 - Did you mean only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs. powerful UI
- Cost

- User interface
 - automatic vs. suggested correction
 - Did you mean only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs. powerful UI
- Cost
 - Spelling correction is potentially expensive.

- User interface
 - automatic vs. suggested correction
 - Did you mean only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs. powerful UI
- Cost
 - Spelling correction is potentially expensive.
 - Avoid running on every query?

General issues in spelling correction

User interface

- automatic vs. suggested correction
- Did you mean only works for one suggestion.
- What about multiple possible corrections?
- Tradeoff: simple vs. powerful UI

Cost

- Spelling correction is potentially expensive.
- Avoid running on every query?
- Maybe just on queries that match few documents.

General issues in spelling correction

User interface

- automatic vs. suggested correction
- Did you mean only works for one suggestion.
- What about multiple possible corrections?
- Tradeoff: simple vs. powerful UI

Cost

- Spelling correction is potentially expensive.
- Avoid running on every query?
- Maybe just on queries that match few documents.
- Guess: Spelling correction of major search engines is efficient enough to be run on every query.

```
import re, collections
def words(text): return re.findall('[a-z]+', text.lower())
def train(features):
    model = collections.defaultdict(lambda: 1)
   for f in features:
       model[f] += 1
   return model
NWORDS = train(words(file('big.txt').read()))
alphabet = 'abcdefghijklmnopqrstuvwxyz'
def edits1(word):
   splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
  deletes = [a + b[1:] for a, b in splits if b]
  transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b) gt 1]
   replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]
   inserts = [a + c + b for a, b in splits for c in alphabet]
   return set(deletes + transposes + replaces + inserts)
def known_edits2(word):
    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)
def known(words): return set(w for w in words if w in NWORDS)
def correct(word):
    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
    return max(candidates, key=NWORDS.get)
```

Outline

- Recap
- 2 Dictionaries
- Wildcard queries
- 4 Edit distance
- Spelling correction
- 6 Soundex

Soundex

• Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
- Example: chebyshev / tchebyscheff

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
- Example: chebyshev / tchebyscheff
- Algorithm:

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
- Example: chebyshev / tchebyscheff
- Algorithm:
 - Turn every token to be indexed into a 4-character reduced form

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
- Example: chebyshev / tchebyscheff
- Algorithm:
 - Turn every token to be indexed into a 4-character reduced form
 - Do the same with query terms

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
- Example: chebyshev / tchebyscheff
- Algorithm:
 - Turn every token to be indexed into a 4-character reduced form
 - Do the same with query terms
 - Build and search an index on the reduced forms

Soundex algorithm

- Retain the first letter of the term.
- Change all occurrences of the following letters to '0' (zero): A, E, I, O, U, H, W, Y
- Ohange letters to digits as follows:
 - B. F. P. V to 1
 - C, G, J, K, Q, S, X, Z to 2
 - D,T to 3
 - L to 4
 - M, N to 5
 - R to 6
- Repeatedly remove one out of each pair of consecutive identical digits
- Remove all zeros from the resulting string; pad the resulting string with trailing zeros and return the first four positions, which will consist of a letter followed by three digits

Retain H

- Retain H
- ERMAN → ORMON

- Retain H
- ERMAN → ORMON
- \bullet 0RM0N \rightarrow 06505

- Retain H
- ERMAN → ORMON
- ORMON → 06505
- \bullet 06505 \to 06505

- Retain H
- ERMAN → ORMON
- 0RM0N → 06505
- $06505 \rightarrow 06505$
- 06505 → 655

- Retain H
- ERMAN → ORMON
- 0RM0N → 06505
- 06505 → 06505
- 06505 → 655
- Return *H655*

- Retain H
- ERMAN → ORMON
- 0RM0N → 06505
- 06505 → 06505
- 06505 → 655
- Return H655
- Note: HERMANN will generate the same code

Soundex

How useful is Soundex?

How useful is Soundex?

Not very – for information retrieval

How useful is Soundex?

- Not very for information retrieval
- Ok for "high recall" tasks in other applications (e.g., Interpol)

How useful is Soundex?

- Not very for information retrieval
- Ok for "high recall" tasks in other applications (e.g., Interpol)
- Zobel and Dart (1996) suggest better alternatives for phonetic matching in IR.

Exercise

• Compute Soundex code of your last name

Take-away

- Tolerant retrieval: What to do if there is no exact match between query term and document term
- Wildcard queries
- Spelling correction

Resources

- Chapter 3 of IIR
- Resources at http://cislmu.org
 - trie vs hash vs ternary tree
 - Soundex demo
 - Edit distance demo
 - Peter Norvig's spelling corrector
 - Google: wild card search, spelling correction gone wrong, a misspelling that is more frequent that the correct spelling