
Introduction to Information Retrieval
http://informationretrieval.org

IIR 4: Index Construction

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-16

1 / 54

http://informationretrieval.org

Overview

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing

2 / 54

Outline

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing

3 / 54

Dictionary as array of fixed-width entries

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
.
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

4 / 54

B-tree for looking up entries in array

5 / 54

Wildcard queries using a permuterm index

Queries:

For X, look up X$

For X*, look up X*$

For *X, look up X$*

For *X*, look up X*

For X*Y, look up
Y$X*

6 / 54

k-gram indexes for spelling correction: bordroom

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

7 / 54

Levenshtein distance for spelling correction

LevenshteinDistance(s1, s2)
1 for i ← 0 to |s1|
2 do m[i , 0] = i
3 for j ← 0 to |s2|
4 do m[0, j] = j
5 for i ← 1 to |s1|
6 do for j ← 1 to |s2|
7 do if s1[i] = s2[j]
8 then m[i , j] = min{m[i − 1, j] + 1,m[i , j − 1] + 1,m[i − 1, j − 1]}
9 else m[i , j] = min{m[i − 1, j] + 1,m[i , j − 1] + 1,m[i − 1, j − 1] + 1}
10 return m[|s1|, |s2|]
Operations: insert, delete, replace, copy

8 / 54

Exercise: Understand Peter Norvig’s spelling corrector

import re, collections

def words(text): return re.findall(’[a-z]+’, text.lower())

def train(features):

model = collections.defaultdict(lambda: 1)

for f in features:

model[f] += 1

return model

NWORDS = train(words(file(’big.txt’).read()))

alphabet = ’abcdefghijklmnopqrstuvwxyz’

def edits1(word):

splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

deletes = [a + b[1:] for a, b in splits if b]

transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b) gt 1]

replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

inserts = [a + c + b for a, b in splits for c in alphabet]

return set(deletes + transposes + replaces + inserts)

def known_edits2(word):

return set(e2 for e1 in edits1(word) for e2 in

edits1(e1) if e2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)

def correct(word):

candidates = known([word]) or known(edits1(word)) or

known_edits2(word) or [word]

return max(candidates, key=NWORDS.get)

9 / 54

Take-away

Two index construction algorithms: BSBI (simple) and SPIMI
(more realistic)

Distributed index construction: MapReduce

Dynamic index construction: how to keep the index
up-to-date as the collection changes

10 / 54

Outline

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing

11 / 54

Hardware basics

Many design decisions in information retrieval are based on
hardware constraints.

We begin by reviewing hardware basics that we’ll need in this
course.

12 / 54

Hardware basics

Access to data is much faster in memory than on disk.
(roughly a factor of 10)

Disk seeks are “idle” time: No data is transferred from disk
while the disk head is being positioned.

To optimize transfer time from disk to memory: one large
chunk is faster than many small chunks.

Disk I/O is block-based: Reading and writing of entire blocks
(as opposed to smaller chunks). Block sizes: 8KB to 256 KB

Servers used in IR systems typically have many GBs of main
memory and TBs of disk space.

Fault tolerance is expensive: It’s cheaper to use many regular
machines than one fault tolerant machine.

13 / 54

Some stats (ca. 2008)

symbol statistic value

s average seek time 5 ms = 5× 10−3 s
b transfer time per byte 0.02 µs = 2× 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation (e.g., compare & swap a word) 0.01 µs = 10−8 s
size of main memory several GB
size of disk space 1 TB or more

14 / 54

RCV1 collection

Shakespeare’s collected works are not large enough for
demonstrating many of the points in this course.

As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection.

English newswire articles sent over the wire in 1995 and 1996
(one year).

15 / 54

A Reuters RCV1 document

16 / 54

Reuters RCV1 statistics

N documents 800,000
L tokens per document 200
M terms (= word types) 400,000

bytes per token (incl. spaces/punct.) 6
bytes per token (without spaces/punct.) 4.5
bytes per term (= word type) 7.5

T non-positional postings 100,000,000
Exercise: Average frequency of a term (how many tokens)? 4.5

bytes per word token vs. 7.5 bytes per word type: why the
difference? How many positional postings?

17 / 54

Exercise

Why does this algorithm not scale to very large collections?

18 / 54

Outline

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing

19 / 54

Goal: construct the inverted index

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings

20 / 54

Index construction in IIR 1: Sort postings in memory
term docID

I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

21 / 54

Sort-based index construction

As we build index, we parse docs one at a time.

The final postings for any term are incomplete until the end.

Can we keep all postings in memory and then do the sort
in-memory at the end?

No, not for large collections

Thus: We need to store intermediate results on disk.

22 / 54

Same algorithm for disk?

Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

No: Sorting very large sets of records on disk is too slow – too
many disk seeks.

We need an external sorting algorithm.

23 / 54

“External” sorting algorithm (using few disk seeks)

We must sort T = 100,000,000 non-positional postings.

Each posting has size 12 bytes (4+4+4: termID, docID, term
frequency).

Define a block to consist of 10,000,000 such postings

We can easily fit that many postings into memory.
We will have 10 such blocks for RCV1.

Basic idea of algorithm:

For each block: (i) accumulate postings, (ii) sort in memory,
(iii) write to disk
Then merge the blocks into one long sorted order.

24 / 54

Merging two blocks

Block 1

brutus d3
caesar d4
noble d3
with d4

Block 2

brutus d2
caesar d1
julius d1
killed d2

postings
to be merged brutus d2

brutus d3
caesar d1
caesar d4
julius d1
killed d2
noble d3
with d4

merged
postings

disk

25 / 54

Blocked Sort-Based Indexing

BSBIndexConstruction()
1 n← 0
2 while (all documents have not been processed)
3 do n← n + 1
4 block ← ParseNextBlock()
5 BSBI-Invert(block)
6 WriteBlockToDisk(block , fn)
7 MergeBlocks(f1, . . . , fn; f merged)

26 / 54

Outline

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing

27 / 54

Problem with sort-based algorithm

Our assumption was: we can keep the dictionary in memory.

We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

Actually, we could work with term,docID postings instead of
termID,docID postings . . .

. . . but then intermediate files become very large. (We would
end up with a scalable, but very slow index construction
method.)

28 / 54

Single-pass in-memory indexing

Abbreviation: SPIMI

Key idea 1: Generate separate dictionaries for each block – no
need to maintain term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

With these two ideas we can generate a complete inverted
index for each block.

These separate indexes can then be merged into one big index.

29 / 54

SPIMI-Invert

SPIMI-Invert(token stream)
1 output file ← NewFile()
2 dictionary ← NewHash()
3 while (free memory available)
4 do token ← next(token stream)
5 if term(token) /∈ dictionary
6 then postings list ← AddToDictionary(dictionary ,term(token))
7 else postings list ← GetPostingsList(dictionary ,term(token))
8 if full(postings list)
9 then postings list ← DoublePostingsList(dictionary ,term(token))
10 AddToPostingsList(postings list,docID(token))
11 sorted terms ← SortTerms(dictionary)
12 WriteBlockToDisk(sorted terms,dictionary ,output file)
13 return output file
Merging of blocks is analogous to BSBI.

30 / 54

SPIMI: Compression

Compression makes SPIMI even more efficient.

Compression of terms
Compression of postings
See next lecture

31 / 54

Outline

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing

32 / 54

Distributed indexing

For web-scale indexing (don’t try this at home!): must use a
distributed computer cluster

Individual machines are fault-prone.

Can unpredictably slow down or fail.

How do we exploit such a pool of machines?

33 / 54

Google data centers (2007 estimates; Gartner)

Google data centers mainly contain commodity machines.

Data centers are distributed all over the world.

1 million servers, 3 million processors/cores

Google installs 100,000 servers each quarter.

Based on expenditures of 200–250 million dollars per year

This would be 10% of the computing capacity of the world!

If in a non-fault-tolerant system with 1000 nodes, each node
has 99.9% uptime, what is the uptime of the system
(assuming it does not tolerate failures)?

Answer: 37%

Suppose a server will fail after 3 years. For an installation of 1
million servers, what is the interval between machine failures?

Answer: less than two minutes

34 / 54

Distributed indexing

Maintain a master machine directing the indexing job –
considered “safe”

Break up indexing into sets of parallel tasks

Master machine assigns each task to an idle machine from a
pool.

35 / 54

Parallel tasks

We will define two sets of parallel tasks and deploy two types
of machines to solve them:

Parsers
Inverters

Break the input document collection into splits (corresponding
to blocks in BSBI/SPIMI)

Each split is a subset of documents.

36 / 54

Parsers

Master assigns a split to an idle parser machine.

Parser reads a document at a time and emits
(term,docID)-pairs.

Parser writes pairs into j term-partitions.

Each for a range of terms’ first letters

E.g., a-f, g-p, q-z (here: j = 3)

37 / 54

Inverters

An inverter collects all (term,docID) pairs (= postings) for
one term-partition (e.g., for a-f).

Sorts and writes to postings lists

38 / 54

Data flow

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

39 / 54

MapReduce

The index construction algorithm we just described is an
instance of MapReduce.

MapReduce is a robust and conceptually simple framework for
distributed computing . . .

. . . without having to write code for the distribution part.

The Google indexing system (ca. 2002) consisted of a number
of phases, each implemented in MapReduce.

Index construction was just one phase.

Another phase: transform term-partitioned into
document-partitioned index.

Why might a document-partitioned index be preferable?

40 / 54

Index construction in MapReduce
Schema of map and reduce functions

map: input → list(k , v)
reduce: (k ,list(v)) → output

Instantiation of the schema for index construction

map: web collection → list(termID, docID)
reduce: (〈termID1, list(docID)〉, 〈termID2, list(docID)〉, . . .) → (postings list1, postings list2, . . .)

Example for index construction

map: d2 : C died. d1 : C came, C c’ed. → (〈C, d2〉, 〈died,d2〉, 〈C,d1〉, 〈came,d1〉, 〈C,d1〉, 〈c’ed,d1〉)
reduce: (〈C,(d2,d1,d1)〉,〈died,(d2)〉,〈came,(d1)〉,〈c’ed,(d1)〉) → (〈C,(d1:2,d2:1)〉,〈died,(d2:1)〉,〈came,(d1:1)〉,〈c’ed,(d1:1)〉)

41 / 54

Exercise

What information does the task description contain that the
master gives to a parser?

What information does the parser report back to the master
upon completion of the task?

What information does the task description contain that the
master gives to an inverter?

What information does the inverter report back to the master
upon completion of the task?

42 / 54

Outline

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing

43 / 54

Dynamic indexing

Up to now, we have assumed that collections are static.

They rarely are: Documents are inserted, deleted and
modified.

This means that the dictionary and postings lists have to be
dynamically modified.

44 / 54

Dynamic indexing: Simplest approach

Maintain big main index on disk

New docs go into small auxiliary index in memory.

Search across both, merge results

Periodically, merge auxiliary index into big index

Deletions:

Invalidation bit-vector for deleted docs
Filter docs returned by index using this bit-vector

45 / 54

Issue with auxiliary and main index

Frequent merges

Poor search performance during index merge

46 / 54

Logarithmic merge

Logarithmic merging amortizes the cost of merging indexes
over time.

→ Users see smaller effect on response times.

Maintain a series of indexes, each twice as large as the
previous one.

Keep smallest (Z0) in memory

Larger ones (I0, I1, . . .) on disk

If Z0 gets too big (> n), write to disk as I0

. . . or merge with I0 (if I0 already exists) and write merger to
I1 etc.

47 / 54

LMergeAddToken(indexes,Z0, token)
1 Z0 ←Merge(Z0, {token})
2 if |Z0| = n
3 then for i ← 0 to ∞
4 do if Ii ∈ indexes
5 then Zi+1 ←Merge(Ii ,Zi)
6 (Zi+1 is a temporary index on disk.)
7 indexes ← indexes − {Ii}
8 else Ii ← Zi (Zi becomes the permanent index Ii .)
9 indexes ← indexes ∪ {Ii}
10 Break

11 Z0 ← ∅

LogarithmicMerge()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes ← ∅
3 while true
4 do LMergeAddToken(indexes,Z0,getNextToken())

48 / 54

Binary numbers: I3I2I1I0 = 23222120

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

49 / 54

Logarithmic merge

Number of indexes bounded by O(logT) (T is total number
of postings read so far)

So query processing requires the merging of O(logT) indexes

Time complexity of index construction is O(T logT).

. . . because each of T postings is merged O(logT) times.

Auxiliary index: index construction time is O(T 2) as each
posting is touched in each merge.

Suppose auxiliary index has size a

a+ 2a+ 3a+ 4a+ . . .+ na = a n(n+1)
2 = O(n2)

So logarithmic merging is an order of magnitude more
efficient.

50 / 54

Dynamic indexing at large search engines

Often a combination

Frequent incremental changes
Rotation of large parts of the index that can then be swapped
in
Occasional complete rebuild (becomes harder with increasing
size – not clear if Google can do a complete rebuild)

51 / 54

Building positional indexes

Basically the same problem except that the intermediate data
structures are large.

52 / 54

Take-away

Two index construction algorithms: BSBI (simple) and SPIMI
(more realistic)

Distributed index construction: MapReduce

Dynamic index construction: how to keep the index
up-to-date as the collection changes

53 / 54

Resources

Chapter 4 of IIR

Resources at http://cislmu.org

Original publication on MapReduce by Dean and Ghemawat
(2004)
Original publication on SPIMI by Heinz and Zobel (2003)
YouTube video: Google data centers

54 / 54

http://cislmu.org

	Recap
	Introduction
	BSBI algorithm
	SPIMI algorithm
	Distributed indexing
	Dynamic indexing

