Introduction to Information Retrieval http://informationretrieval.org

IIR 4: Index Construction

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-16

- BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- Oynamic indexing

Outline

- 2 Introduction
- 3 BSBI algorithm
- ④ SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

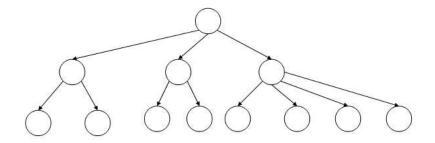
Dictionary as array of fixed-width entries

	term	document frequency	pointer to postings list
	_		postings list
	а	656,265	\rightarrow
	aachen	65	\longrightarrow
	zulu	221	\longrightarrow
space needed:	20 bytes	4 bytes	4 bytes

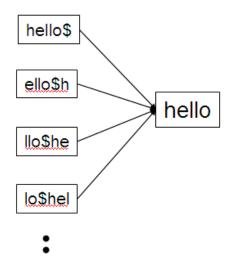
Recap

Dynamic indexing

B-tree for looking up entries in array



Wildcard queries using a permuterm index



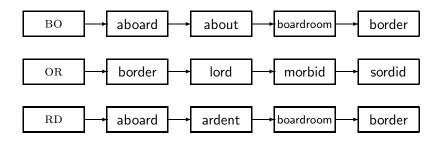
Wildcard queries using a permuterm index



Queries:

- For X, look up X\$
- For X*, look up X*\$
- For *X, look up X\$*
- For *X*, look up X*
- For X*Y, look up Y\$X*

k-gram indexes for spelling correction: bordroom



Recap In

Levenshtein distance for spelling correction

LEVENSHTEINDISTANCE(s_1, s_2)

Operations: insert, delete, replace, copy

Exercise: Understand Peter Norvig's spelling corrector

```
import re, collections
def words(text): return re.findall('[a-z]+', text.lower())
def train(features):
   model = collections.defaultdict(lambda: 1)
   for f in features:
       model[f] += 1
   return model
NWORDS = train(words(file('big.txt').read()))
alphabet = 'abcdefghijklmnopqrstuvwxyz'
def edits1(word):
  splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
  deletes = [a + b[1:] for a, b in splits if b]
  transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b) gt 1]
  replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]
             = [a + c + b for a, b in splits for c in alphabet]
  inserts
  return set(deletes + transposes + replaces + inserts)
def known edits2(word):
   return set(e2 for e1 in edits1(word) for e2 in
   edits1(e1) if e2 in NWORDS)
def known(words): return set(w for w in words if w in NWORDS)
def correct(word):
   candidates = known([word]) or known(edits1(word)) or
   known_edits2(word) or [word]
   return max(candidates, key=NWORDS.get)
```


 Two index construction algorithms: BSBI (simple) and SPIMI (more realistic)

- Two index construction algorithms: BSBI (simple) and SPIMI (more realistic)
- Distributed index construction: MapReduce

- Two index construction algorithms: BSBI (simple) and SPIMI (more realistic)
- Distributed index construction: MapReduce
- Dynamic index construction: how to keep the index up-to-date as the collection changes

Outline

- 3 BSBI algorithm
- ④ SPIMI algorithm
- Distributed indexing
- Oynamic indexing

Hardware basics

• Many design decisions in information retrieval are based on hardware constraints.

- Many design decisions in information retrieval are based on hardware constraints.
- We begin by reviewing hardware basics that we'll need in this course.

Hardware basics

• Access to data is much faster in memory than on disk. (roughly a factor of 10)

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks are "idle" time: No data is transferred from disk while the disk head is being positioned.

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks are "idle" time: No data is transferred from disk while the disk head is being positioned.
- To optimize transfer time from disk to memory: one large chunk is faster than many small chunks.

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks are "idle" time: No data is transferred from disk while the disk head is being positioned.
- To optimize transfer time from disk to memory: one large chunk is faster than many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks are "idle" time: No data is transferred from disk while the disk head is being positioned.
- To optimize transfer time from disk to memory: one large chunk is faster than many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB
- Servers used in IR systems typically have many GBs of main memory and TBs of disk space.

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks are "idle" time: No data is transferred from disk while the disk head is being positioned.
- To optimize transfer time from disk to memory: one large chunk is faster than many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB
- Servers used in IR systems typically have many GBs of main memory and TBs of disk space.
- Fault tolerance is expensive: It's cheaper to use many regular machines than one fault tolerant machine.

ecap Introduction

Some stats (ca. 2008)

symbol	statistic	value
S	average seek time	$5~{ m ms}=5 imes10^{-3}~{ m s}$
Ь	transfer time per byte	0.02 $\mu \mathrm{s} = 2 imes 10^{-8} \mathrm{~s}$
	processor's clock rate	$10^9 {\rm s}^{-1}$
р	lowlevel operation (e.g., compare & swap a word)	0.01 $\mu { m s} = 10^{-8}~{ m s}$
	size of main memory	several GB
	size of disk space	1 TB or more

RCV1 collection

• Shakespeare's collected works are not large enough for demonstrating many of the points in this course.

- Shakespeare's collected works are not large enough for demonstrating many of the points in this course.
- As an example for applying scalable index construction algorithms, we will use the Reuters RCV1 collection.

- Shakespeare's collected works are not large enough for demonstrating many of the points in this course.
- As an example for applying scalable index construction algorithms, we will use the Reuters RCV1 collection.
- English newswire articles sent over the wire in 1995 and 1996 (one year).

A Reuters RCV1 document

REUTERS 🤀

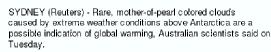
You are here: Home > News > Science > Article

Go to a Section: U.S. International Business Markets Politics Entertainment Technology Sports Oddly End

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

[-] Text [+]



Known as nacreous clouds, the spectacular formations showing delicate wisps of colors were photographed in the sky over an Australian

Reuters RCV1 statistics

Ν	documents	800,000
L	tokens per document	200
Μ	terms (= word types)	400,000
	bytes per token (incl. spaces/punct.)	6
	bytes per token (without spaces/punct.)	4.5
	bytes per term (= word type)	7.5
Т	non-positional postings	100,000,000

Reuters RCV1 statistics

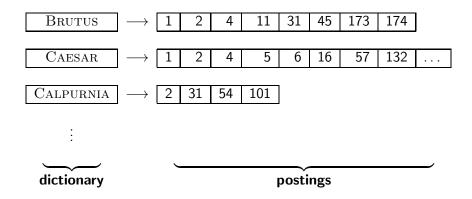
Ν	documents	800,000
L	tokens per document	200
Μ	terms (= word types)	400,000
	bytes per token (incl. spaces/punct.)	6
	bytes per token (without spaces/punct.)	4.5
	bytes per term (= word type)	7.5
Т	non-positional postings	100,000,000

Exercise: Average frequency of a term (how many tokens)? 4.5 bytes per word token vs. 7.5 bytes per word type: why the difference? How many positional postings?

Why does this algorithm not scale to very large collections?

- ④ SPIMI algorithm
- Distributed indexing
- Oynamic indexing

Goal: construct the inverted index



Recap

Dynamic indexing

Index construction in IIR 1: Sort postings in memory

term	docID		term	docID
1	1		ambitious 2	
did	1		be	2
enact	1		brutus	1
julius	1		brutus	2
caesar	1		capitol	1
1	1		caesar	1
was	1		caesar	2
killed	1		caesar	2
i'	1		did	1
the	1		enact	1
capitol	1		hath	1
brutus	1		1	1
killed	1		1	1
me	1	\implies	i'	1
SO	2		it	2
let	2		julius	1
it	2		killed	1
be	2		killed	1
with	2 2 2 2 2 2 2		let	2
caesar	2		me	1
the	2		noble	2 2
noble	2		SO	2
brutus	2		the	1
hath	2		the	2
told	2		told	2 2 2
you	2		you	2
caesar	2		was	1
was	2 2 2 2 2 2 2 2 2 2 2 2		was	2
ambitio	us 2		with	2

Distributed indexin

Dynamic indexing

• As we build index, we parse docs one at a time.

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.
- Can we keep all postings in memory and then do the sort in-memory at the end?

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.
- Can we keep all postings in memory and then do the sort in-memory at the end?
- No, not for large collections

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.
- Can we keep all postings in memory and then do the sort in-memory at the end?
- No, not for large collections
- Thus: We need to store intermediate results on disk.

Distributed index

Dynamic indexi

Same algorithm for disk?

Same algorithm for disk?

• Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?

Same algorithm for disk?

- Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?
- No: Sorting very large sets of records on disk is too slow too many disk seeks.

Same algorithm for disk?

- Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?
- No: Sorting very large sets of records on disk is too slow too many disk seeks.
- We need an external sorting algorithm.

• We must sort T = 100,000,000 non-positional postings.

- We must sort T = 100,000,000 non-positional postings.
 - Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).

- We must sort T = 100,000,000 non-positional postings.
 - Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).
- Define a block to consist of 10,000,000 such postings

- We must sort T = 100,000,000 non-positional postings.
 - Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.

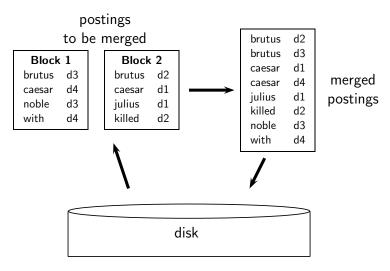
- We must sort T = 100,000,000 non-positional postings.
 - Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.

- We must sort T = 100,000,000 non-positional postings.
 - Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.
- Basic idea of algorithm:

- We must sort T = 100,000,000 non-positional postings.
 - Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.
- Basic idea of algorithm:
 - For each block: (i) accumulate postings, (ii) sort in memory, (iii) write to disk

- We must sort T = 100,000,000 non-positional postings.
 - Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.
- Basic idea of algorithm:
 - For each block: (i) accumulate postings, (ii) sort in memory, (iii) write to disk
 - Then merge the blocks into one long sorted order.

Merging two blocks



Blocked Sort-Based Indexing

BSBINDEXCONSTRUCTION()

- $1 \quad n \leftarrow 0$
- 2 while (all documents have not been processed)
- 3 do $n \leftarrow n+1$
- 4 $block \leftarrow PARSENEXTBLOCK()$
- 5 BSBI-INVERT(*block*)
- 6 WRITEBLOCKTODISK(*block*, f_n)
- 7 MERGEBLOCKS $(f_1, \ldots, f_n; f_{merged})$

- 2 Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- Oynamic indexing

• Our assumption was: we can keep the dictionary in memory.

- Our assumption was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.

- Our assumption was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.
- Actually, we could work with term,docID postings instead of termID,docID postings . . .

- Our assumption was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.
- Actually, we could work with term,docID postings instead of termID,docID postings . . .
- ... but then intermediate files become very large. (We would end up with a scalable, but very slow index construction method.)

SPIMI algorithm

Distributed indexing

Dynamic indexing

• Abbreviation: SPIMI

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.
- These separate indexes can then be merged into one big index.

SPIMI-INVERT(token_stream)

- 1 output_file \leftarrow NEWFILE()
- 2 *dictionary* \leftarrow NEWHASH()
- 3 while (free memory available)
- 4 **do** token ← next(token_stream)
- 5 **if** $term(token) \notin dictionary$
- 6 **then** *postings_list* \leftarrow ADDTODICTIONARY(*dictionary,term*(*token*))
- 7 else $postings_list \leftarrow GetPostingsList(dictionary,term(token))$
- 8 **if** *full*(*postings_list*)
- 9 **then** *postings_list* \leftarrow DOUBLEPOSTINGSLIST(*dictionary*,*term*(*token*)
- 10 ADDTOPOSTINGSLIST(*postings_list,doclD*(*token*))
- 11 *sorted_terms* ← SORTTERMS(*dictionary*)
- 12 WRITEBLOCKTODISK(sorted_terms,dictionary,output_file)
- 13 return output_file

- 4 **do** $token \leftarrow next(token_stream)$
- 5 **if** $term(token) \notin dictionary$
- 6 **then** *postings_list* \leftarrow ADDTODICTIONARY(*dictionary,term*(*token*))
- 7 else postings_list $\leftarrow GETPOSTINGSLIST(dictionary, term(token))$
- 8 **if** full(postings_list)
- 9 **then** *postings_list* \leftarrow DOUBLEPOSTINGSLIST(*dictionary*,*term*(*token*)
- 10 ADDTOPOSTINGSLIST(postings_list,doclD(token))
- 11 *sorted_terms* \leftarrow SORTTERMS(*dictionary*)
- 12 WRITEBLOCKTODISK(sorted_terms,dictionary,output_file)
- 13 return output_file

Merging of blocks is analogous to BSBI.

• Compression makes SPIMI even more efficient.

- Compression makes SPIMI even more efficient.
 - Compression of terms

- Compression makes SPIMI even more efficient.
 - Compression of terms
 - Compression of postings

- Compression makes SPIMI even more efficient.
 - Compression of terms
 - Compression of postings
 - See next lecture

Outline

- Distributed indexing

Distributed indexing

• For web-scale indexing (don't try this at home!): must use a distributed computer cluster

- For web-scale indexing (don't try this at home!): must use a distributed computer cluster
- Individual machines are fault-prone.

Distributed indexing

- For web-scale indexing (don't try this at home!): must use a distributed computer cluster
- Individual machines are fault-prone.
 - Can unpredictably slow down or fail.

Distributed indexing

- For web-scale indexing (don't try this at home!): must use a distributed computer cluster
- Individual machines are fault-prone.
 - Can unpredictably slow down or fail.
- How do we exploit such a pool of machines?

Dynamic indexing

• Google data centers mainly contain commodity machines.

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.

ap Introdi

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores

ap Introd

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!
- If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system (assuming it does not tolerate failures)?

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!
- If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system (assuming it does not tolerate failures)?
- Answer: 37%

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!
- If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system (assuming it does not tolerate failures)?
- Answer: 37%
- Suppose a server will fail after 3 years. For an installation of 1 million servers, what is the interval between machine failures?

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!
- If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system (assuming it does not tolerate failures)?
- Answer: 37%
- Suppose a server will fail after 3 years. For an installation of 1 million servers, what is the interval between machine failures?
- Answer: less than two minutes

Distributed indexing

 Maintain a master machine directing the indexing job – considered "safe"

- Maintain a master machine directing the indexing job considered "safe"
- Break up indexing into sets of parallel tasks

Distributed indexing

- Maintain a master machine directing the indexing job considered "safe"
- Break up indexing into sets of parallel tasks
- Master machine assigns each task to an idle machine from a pool.

Parallel tasks

• We will define two sets of parallel tasks and deploy two types of machines to solve them:

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers

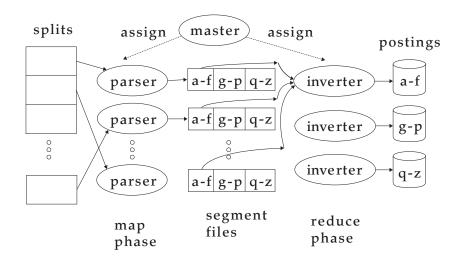
- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers
 - Inverters

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers
 - Inverters
- Break the input document collection into splits (corresponding to blocks in BSBI/SPIMI)

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers
 - Inverters
- Break the input document collection into splits (corresponding to blocks in BSBI/SPIMI)
- Each split is a subset of documents.

- Master assigns a split to an idle parser machine.
- Parser reads a document at a time and emits (term,docID)-pairs.
- Parser writes pairs into *j* term-partitions.
- Each for a range of terms' first letters

- An inverter collects all (term,docID) pairs (= postings) for one term-partition (e.g., for a-f).
- Sorts and writes to postings lists



MapReduce



• The index construction algorithm we just described is an instance of MapReduce.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing ...

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.
- The Google indexing system (ca. 2002) consisted of a number of phases, each implemented in MapReduce.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.
- The Google indexing system (ca. 2002) consisted of a number of phases, each implemented in MapReduce.
- Index construction was just one phase.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.
- The Google indexing system (ca. 2002) consisted of a number of phases, each implemented in MapReduce.
- Index construction was just one phase.
- Another phase: transform term-partitioned into document-partitioned index.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.
- The Google indexing system (ca. 2002) consisted of a number of phases, each implemented in MapReduce.
- Index construction was just one phase.
- Another phase: transform term-partitioned into document-partitioned index.
- Why might a document-partitioned index be preferable?

Index construction in MapReduce

Schema of map and reduce functions

map:	input
reduce:	(k,list(v))

 $\rightarrow list(k, v)$ $\rightarrow output$

Instantiation of the schema for index construction

map:	web collection
reduce:	$(\langle termID_1, list(docID) \rangle, \langle termID_2, list(docID) \rangle,)$

 \rightarrow list(termID, docID) \rightarrow (postings_list_1, postings_list_2, ...)

Example for index construction

map:	d_2 : C died. d_1 : C came, C c'ed.
reduce:	$((C, (d_2, d_1, d_1)), (DIED, (d_2)), (CAME, (d_1)), (C'ED, (d_1)))$

\rightarrow ((C, d ₂), (DIED, d ₂), (C, d ₁), (CAME, d ₁), (C, d ₁), (C'ED, d ₁))	
$\rightarrow (\langle C, (d_1:2, d_2:1) \rangle, \langle DIED, (d_2:1) \rangle, \langle CAME, (d_1:1) \rangle, \langle C'ED, (d_1:1) \rangle)$	

- What information does the task description contain that the master gives to a parser?
- What information does the parser report back to the master upon completion of the task?
- What information does the task description contain that the master gives to an inverter?
- What information does the inverter report back to the master upon completion of the task?

Outline

- 1 Recap
- Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

Dynamic indexing

• Up to now, we have assumed that collections are static.

Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are: Documents are inserted, deleted and modified.

Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are: Documents are inserted, deleted and modified.
- This means that the dictionary and postings lists have to be dynamically modified.

• Maintain big main index on disk

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index
- Deletions:

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index
- Deletions:
 - Invalidation bit-vector for deleted docs

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index
- Deletions:
 - Invalidation bit-vector for deleted docs
 - Filter docs returned by index using this bit-vector

Issue with auxiliary and main index

Recap

Distributed indexing

Dynamic indexing

Issue with auxiliary and main index

Frequent merges

Recap

Dynamic indexing

Issue with auxiliary and main index

- Frequent merges
- Poor search performance during index merge

Logarithmic merge

• Logarithmic merging amortizes the cost of merging indexes over time.

- Logarithmic merging amortizes the cost of merging indexes over time.
 - ullet \to Users see smaller effect on response times.

- Logarithmic merging amortizes the cost of merging indexes over time.
 - $\bullet \ \rightarrow$ Users see smaller effect on response times.
- Maintain a series of indexes, each twice as large as the previous one.

- Logarithmic merging amortizes the cost of merging indexes over time.
 - $\bullet \ \rightarrow$ Users see smaller effect on response times.
- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (Z_0) in memory

- Logarithmic merging amortizes the cost of merging indexes over time.
 - $\bullet~\rightarrow$ Users see smaller effect on response times.
- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (Z₀) in memory
- Larger ones (I_0, I_1, \dots) on disk

- Logarithmic merging amortizes the cost of merging indexes over time.
 - $\bullet \ \to$ Users see smaller effect on response times.
- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (Z_0) in memory
- Larger ones (I_0, I_1, \dots) on disk
- If Z_0 gets too big (> n), write to disk as I_0

- Logarithmic merging amortizes the cost of merging indexes over time.
 - $\bullet~\rightarrow$ Users see smaller effect on response times.
- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (Z₀) in memory
- Larger ones (I_0, I_1, \dots) on disk
- If Z_0 gets too big (> n), write to disk as I_0
- ... or merge with I_0 (if I_0 already exists) and write merger to I_1 etc.

LMERGEADDTOKEN(*indexes*, Z_0 , *token*) $Z_0 \leftarrow \text{MERGE}(Z_0, \{\text{token}\})$ 1 2 **if** $|Z_0| = n$ 3 then for $i \leftarrow 0$ to ∞ **do if** $I_i \in indexes$ 4 5 then $Z_{i+1} \leftarrow \text{Merge}(I_i, Z_i)$ $(Z_{i+1} \text{ is a temporary index on disk.})$ 6 7 indexes \leftarrow indexes $- \{I_i\}$ 8 else $I_i \leftarrow Z_i$ (Z_i becomes the permanent index I_i .) 9 indexes \leftarrow indexes \cup { I_i } 10 BREAK 11 $Z_0 \leftarrow \emptyset$

LOGARITHMICMERGE()

- 1 $Z_0 \leftarrow \emptyset$ (Z_0 is the in-memory index.)
- 2 indexes $\leftarrow \emptyset$
- 3 while true
- 4 **do** LMERGEADDTOKEN(*indexes*, Z₀, GETNEXTTOKEN())

Binary numbers: $I_3 I_2 I_1 I_0 = 2^3 2^2 2^1 2^0$

Binary numbers: $I_3 I_2 I_1 I_0 = 2^3 2^2 2^1 2^0$

• 0001

- 0001
- 0010

- 0001
- 0010
- 0011

- 0001
- 0010
- 0011
- 0100

- 0001
- 0010
- 0011
- 0100
- 0101

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001
- 1010

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001
- 1010
- 1011

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001
- 1010
- 1011
- 1100

Logarithmic merge

• Number of indexes bounded by $O(\log T)$ (*T* is total number of postings read so far)

- Number of indexes bounded by $O(\log T)$ (*T* is total number of postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes

- Number of indexes bounded by $O(\log T)$ (*T* is total number of postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction is $O(T \log T)$.

- Number of indexes bounded by $O(\log T)$ (*T* is total number of postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction is $O(T \log T)$.
 - ... because each of T postings is merged $O(\log T)$ times.

- Number of indexes bounded by O(log T) (T is total number of postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction is $O(T \log T)$.
 - ... because each of T postings is merged $O(\log T)$ times.
- Auxiliary index: index construction time is $O(T^2)$ as each posting is touched in each merge.

- Number of indexes bounded by O(log T) (T is total number of postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction is $O(T \log T)$.
 - ... because each of T postings is merged $O(\log T)$ times.
- Auxiliary index: index construction time is $O(T^2)$ as each posting is touched in each merge.
 - Suppose auxiliary index has size a

- Number of indexes bounded by O(log T) (T is total number of postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction is $O(T \log T)$.
 - ... because each of T postings is merged $O(\log T)$ times.
- Auxiliary index: index construction time is $O(T^2)$ as each posting is touched in each merge.
 - Suppose auxiliary index has size a

•
$$a + 2a + 3a + 4a + \ldots + na = a \frac{n(n+1)}{2} = O(n^2)$$

- Number of indexes bounded by O(log T) (T is total number of postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction is $O(T \log T)$.
 - ... because each of T postings is merged $O(\log T)$ times.
- Auxiliary index: index construction time is $O(T^2)$ as each posting is touched in each merge.
 - Suppose auxiliary index has size a
 - $a + 2a + 3a + 4a + \ldots + na = a \frac{n(n+1)}{2} = O(n^2)$
- So logarithmic merging is an order of magnitude more efficient.

Dynamic indexing

Dynamic indexing at large search engines

• Often a combination

• Often a combination

• Frequent incremental changes

- Often a combination
 - Frequent incremental changes
 - Rotation of large parts of the index that can then be swapped in

- Often a combination
 - Frequent incremental changes
 - Rotation of large parts of the index that can then be swapped in
 - Occasional complete rebuild (becomes harder with increasing size not clear if Google can do a complete rebuild)

Building positional indexes

Building positional indexes

• Basically the same problem except that the intermediate data structures are large.

- Two index construction algorithms: BSBI (simple) and SPIMI (more realistic)
- Distributed index construction: MapReduce
- Dynamic index construction: how to keep the index up-to-date as the collection changes

Resources

- Chapter 4 of IIR
- Resources at http://cislmu.org
 - Original publication on MapReduce by Dean and Ghemawat (2004)
 - Original publication on SPIMI by Heinz and Zobel (2003)
 - YouTube video: Google data centers