
Introduction to Information Retrieval
http://informationretrieval.org

IIR 5: Index Compression

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-17

1 / 59

http://informationretrieval.org

Overview

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression

2 / 59

Outline

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression

3 / 59

Blocked Sort-Based Indexing

brutus d3
caesar d4
noble d3
with d4

brutus d2
caesar d1
julius d1
killed d2

postings
to be merged brutus d2

brutus d3
caesar d1
caesar d4
julius d1
killed d2
noble d3
with d4

merged
postings

disk

4 / 59

Single-pass in-memory indexing

Abbreviation: SPIMI

Key idea 1: Generate separate dictionaries for each block – no
need to maintain term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

With these two ideas we can generate a complete inverted
index for each block.

These separate indexes can then be merged into one big index.

5 / 59

SPIMI-Invert

SPIMI-Invert(token stream)
1 output file ← NewFile()
2 dictionary ← NewHash()
3 while (free memory available)
4 do token ← next(token stream)
5 if term(token) /∈ dictionary

6 then postings list ← AddToDictionary(dictionary ,term(token))
7 else postings list ← GetPostingsList(dictionary ,term(token))
8 if full(postings list)
9 then postings list ← DoublePostingsList(dictionary ,term(token))
10 AddToPostingsList(postings list,docID(token))
11 sorted terms ← SortTerms(dictionary)
12 WriteBlockToDisk(sorted terms,dictionary ,output file)
13 return output file

6 / 59

MapReduce for index construction

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

7 / 59

Dynamic indexing: Simplest approach

Maintain big main index on disk

New docs go into small auxiliary index in memory.

Search across both, merge results

Periodically, merge auxiliary index into big index

8 / 59

Take-away today

Motivation for compression in information retrieval systems

How can we compress the dictionary component of the
inverted index?

How can we compress the postings component of the inverted
index?

Term statistics: how are terms distributed in document
collections?

9 / 59

Outline

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression

10 / 59

Why compression? (in general)

Use less disk space (saves money)

Keep more stuff in memory (increases speed)

Increase speed of transferring data from disk to memory
(again, increases speed)

[read compressed data and decompress in memory]
is faster than
[read uncompressed data]

Premise: Decompression algorithms are fast.

This is true of the decompression algorithms we will use.

11 / 59

Why compression in information retrieval?

First, we will consider space for dictionary

Main motivation for dictionary compression: make it small
enough to keep in main memory

Then for the postings file

Motivation: reduce disk space needed, decrease time needed to
read from disk
Note: Large search engines keep significant part of postings in
memory

We will devise various compression schemes for dictionary and
postings.

12 / 59

Lossy vs. lossless compression

Lossy compression: Discard some information

Several of the preprocessing steps we frequently use can be
viewed as lossy compression:

downcasing, stop words, porter, number elimination

Lossless compression: All information is preserved.

What we mostly do in index compression

13 / 59

Outline

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression

14 / 59

Model collection: The Reuters collection

symbol statistic value

N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per word type 7.5

T non-positional postings 100,000,000

15 / 59

Effect of preprocessing for Reuters

word types non-positional positional postings
(terms) postings (word tokens)

size of dictionary non-positional index positional index
size ∆cml size ∆ cml size ∆cml

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2 -2 100,680,242 -8 -8 179,158,204 -9 -9
case folding 391,523 -17 -19 96,969,056 -3 -12 179,158,204 -0 -9
30 stopw’s 391,493 -0 -19 83,390,443 -14 -24 121,857,825 -31 -38
150 stopw’s 391,373 -0 -19 67,001,847 -30 -39 94,516,599 -47 -52
stemming 322,383 -17 -33 63,812,300 -4 -42 94,516,599 -0 -52

Explain differences between numbers non-positional vs positional:

-3 vs -0, -14 vs -31, -30 vs -47, -4 vs -0

16 / 59

How big is the term vocabulary?

That is, how many distinct words are there?

Can we assume there is an upper bound?

Not really: At least 7020 ≈ 1037 different words of length 20.

The vocabulary will keep growing with collection size.

Heaps’ law: M = kT b

M is the size of the vocabulary, T is the number of tokens in
the collection.

Typical values for the parameters k and b are: 30 ≤ k ≤ 100
and b ≈ 0.5.

Heaps’ law is linear in log-log space.

It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
Empirical law

17 / 59

Heaps’ law for Reuters

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g1

0
M

Vocabulary size M as a

function of collection size

T (number of tokens) for

Reuters-RCV1. For these

data, the dashed line

log10 M =

0.49 ∗ log10 T + 1.64 is the

best least squares fit.

Thus, M = 101.64T 0.49

and k = 101.64 ≈ 44 and

b = 0.49.

18 / 59

Empirical fit for Reuters

Good, as we just saw in the graph.

Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44× 1,000,0200.49 ≈ 38,323

The actual number is 38,365 terms, very close to the
prediction.

Empirical observation: fit is good in general.

19 / 59

Exercise

1 What is the effect of including spelling errors vs. automatically
correcting spelling errors on Heaps’ law?

2 Compute vocabulary size M

Looking at a collection of web pages, you find that there are
3000 different terms in the first 10,000 tokens and 30,000
different terms in the first 1,000,000 tokens.
Assume a search engine indexes a total of 20,000,000,000
(2× 1010) pages, containing 200 tokens on average
What is the size of the vocabulary of the indexed collection as
predicted by Heaps’ law?

20 / 59

Zipf’s law

Now we have characterized the growth of the vocabulary in
collections.

We also want to know how many frequent vs. infrequent
terms we should expect in a collection.

In natural language, there are a few very frequent terms and
very many very rare terms.

Zipf’s law: The i th most frequent term has frequency cf i

proportional to 1/i .

cf i ∝
1
i

cf i is collection frequency: the number of occurrences of the
term ti in the collection.

21 / 59

Zipf’s law

Zipf’s law: The i th most frequent term has frequency
proportional to 1/i .

cf i ∝
1
i

cf is collection frequency: the number of occurrences of the
term in the collection.

So if the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences
cf2 =

1
2cf1 . . .

. . . and the third most frequent term (and) has a third as
many occurrences cf3 =

1
3cf1 etc.

Equivalent: cf i = cik and log cf i = log c + k log i (for k = −1)

Example of a power law

22 / 59

Zipf’s law for Reuters

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

log10 rank

lo
g1

0
cf

Fit is not great. What
is important is the
key insight: Few fre-
quent terms, many
rare terms.

23 / 59

Outline

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression

24 / 59

Dictionary compression

The dictionary is small compared to the postings file.

But we want to keep it in memory.

Also: competition with other applications, cell phones,
onboard computers, fast startup time

So compressing the dictionary is important.

25 / 59

Recall: Dictionary as array of fixed-width entries

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
.
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

Space

for Reuters: (20+4+4)*400,000 = 11.2 MB

26 / 59

Fixed-width entries are bad.

Most of the bytes in the term column are wasted.

We allot 20 bytes for terms of length 1.

We can’t handle hydrochlorofluorocarbons and
supercalifragilisticexpialidocious

Average length of a term in English: 8 characters (or a little
bit less)

How can we use on average 8 characters per term?

27 / 59

Dictionary as a string

. . . sys t i l esyzyget i csyzyg i a l syzygysza ibe l y i teszec inszono. . .

freq.

9
92
5
71
12
. . .

4 bytes

postings ptr.

→
→
→
→
→
. . .

4 bytes

term ptr.

3 bytes

. . .

28 / 59

Space for dictionary as a string

4 bytes per term for frequency

4 bytes per term for pointer to postings list

8 bytes (on average) for term in string

3 bytes per pointer into string (need log2 8 · 400000 < 24 bits
to resolve 8 · 400,000 positions)

Space: 400,000× (4 + 4 + 3+ 8) = 7.6MB (compared to 11.2
MB for fixed-width array)

29 / 59

Dictionary as a string with blocking

. . . 7 sys t i l e 9 syzyge t i c 8 syzyg i a l 6 syzygy11s za i be l y i t e 6 s zec i n . . .

freq.

9
92
5
71
12
. . .

postings ptr.

→
→
→
→
→
. . .

term ptr.

. . .

30 / 59

Space for dictionary as a string with blocking

Example block size k = 4

Where we used 4× 3 bytes for term pointers without blocking
. . .

. . . we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

We save 12− (3 + 4) = 5 bytes per block.

Total savings: 400,000/4 ∗ 5 = 0.5 MB

This reduces the size of the dictionary from 7.6 MB to 7.1
MB.

31 / 59

Lookup of a term without blocking

aid

box

den

ex

job

ox

pit

win

32 / 59

Lookup of a term with blocking: (slightly) slower

aid box den ex

job ox pit win

33 / 59

Front coding

One block in blocked compression (k = 4) . . .
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

⇓

. . . further compressed with front coding.
8 a u t o m a t ∗ a 1 ⋄ e 2 ⋄ i c 3 ⋄ i o n

34 / 59

Dictionary compression for Reuters: Summary

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9

35 / 59

Exercise

Which prefixes should be used for front coding? What are the
tradeoffs?

Input: list of terms (= the term vocabulary)

Output: list of prefixes that will be used in front coding

36 / 59

Outline

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression

37 / 59

Postings compression

The postings file is much larger than the dictionary, factor of
at least 10.

Key desideratum: store each posting compactly

A posting for our purposes is a docID.

For Reuters (800,000 documents), we would use 32 bits per
docID when using 4-byte integers.

Alternatively, we can use log2 800,000 ≈ 19.6 < 20 bits per
docID.

Our goal: use a lot less than 20 bits per docID.

38 / 59

Key idea: Store gaps instead of docIDs

Each postings list is ordered in increasing order of docID.

Example postings list: computer: 283154, 283159, 283202,
. . .

It suffices to store gaps: 283159-283154=5,
283202-283159=43

Example postings list using gaps : computer: 283154, 5,
43, . . .

Gaps for frequent terms are small.

Thus: We can encode small gaps with fewer than 20 bits.

39 / 59

Gap encoding

encoding postings list

the docIDs . . . 283042 283043 283044 283045 . . .
gaps 1 1 1 . . .

computer docIDs . . . 283047 283154 283159 283202 . . .
gaps 107 5 43 . . .

arachnocentric docIDs 252000 500100
gaps 252000 248100

40 / 59

Variable length encoding

Aim:

For arachnocentric and other rare terms, we will use
about 20 bits per gap (= posting).
For the and other very frequent terms, we will use only a few
bits per gap (= posting).

In order to implement this, we need to devise some form of
variable length encoding.

Variable length encoding uses few bits for small gaps and
many bits for large gaps.

41 / 59

Variable byte (VB) code

Used by many commercial/research systems

Good low-tech blend of variable-length coding and sensitivity
to alignment matches (bit-level codes, see later).

Dedicate 1 bit (high bit) to be a continuation bit c .

If the gap G fits within 7 bits, binary-encode it in the 7
available bits and set c = 1.

Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

At the end set the continuation bit of the last byte to 1
(c = 1) and of the other bytes to 0 (c = 0).

42 / 59

VB code examples

docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001

43 / 59

VB code encoding algorithm

VBEncodeNumber(n)
1 bytes ← 〈〉
2 while true

3 do Prepend(bytes, n mod 128)
4 if n < 128
5 then Break

6 n← n div 128
7 bytes[Length(bytes)] += 128
8 return bytes

VBEncode(numbers)
1 bytestream ← 〈〉
2 for each n ∈ numbers

3 do bytes ← VBEncodeNumber(n)
4 bytestream← Extend(bytestream, bytes)
5 return bytestream

44 / 59

VB code decoding algorithm

VBDecode(bytestream)
1 numbers ← 〈〉
2 n← 0
3 for i ← 1 to Length(bytestream)
4 do if bytestream[i] < 128
5 then n← 128× n + bytestream[i]
6 else n← 128× n + (bytestream[i]− 128)
7 Append(numbers, n)
8 n← 0
9 return numbers

45 / 59

Other variable codes

Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

Variable byte alignment wastes space if you have many small
gaps – nibbles do better on those.

There is work on word-aligned codes that efficiently “pack” a
variable number of gaps into one word – see resources at the
end

46 / 59

Gamma codes for gap encoding

You can get even more compression with another type of
variable length encoding: bitlevel code.

Gamma code is the best known of these.

First, we need unary code to be able to introduce gamma
code.

Unary code

Represent n as n 1s with a final 0.
Unary code for 3 is 1110
Unary code for 40 is
110
Unary code for 70 is:

110

47 / 59

Gamma code

Represent a gap G as a pair of length and offset.

Offset is the gap in binary, with the leading bit chopped off.

For example 13 → 1101 → 101 = offset

Length is the length of offset.

For 13 (offset 101), this is 3.

Encode length in unary code: 1110.

Gamma code of 13 is the concatenation of length and offset:
1110101.

48 / 59

Gamma code examples

number unary code length offset γ code

0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

49 / 59

Exercise

Compute the variable byte code of 130

Compute the gamma code of 130

50 / 59

Length of gamma code

The length of offset is ⌊log2 G⌋ bits.

The length of length is ⌊log2 G⌋+ 1 bits,

So the length of the entire code is 2× ⌊log2 G⌋+ 1 bits.

γ codes are always of odd length.

Gamma codes are within a factor of 2 of the optimal encoding
length log2 G .

(assuming the frequency of a gap G is proportional to log2 G –
only approximately true)

51 / 59

Gamma code: Properties

Gamma code (like variable byte code) is prefix-free: a valid
code word is not a prefix of any other valid code.

Encoding is optimal within a factor of 3 (and within a factor
of 2 making additional assumptions).

This result is independent of the distribution of gaps!

We can use gamma codes for any distribution. Gamma code
is universal.

Gamma code is parameter-free.

52 / 59

Gamma codes: Alignment

Machines have word boundaries – 8, 16, 32 bits

Compressing and manipulating at granularity of bits can be
slow.

Variable byte encoding is aligned and thus potentially more
efficient.

Regardless of efficiency, variable byte is conceptually simpler
at little additional space cost.

53 / 59

Compression of Reuters

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0

54 / 59

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius

Caesar. Entry is 0 if term doesn’t occur. Example: Calpurnia

doesn’t occur in The tempest.

55 / 59

Compression of Reuters

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0

56 / 59

Summary

We can now create an index for highly efficient Boolean
retrieval that is very space efficient.

Only 10-15% of the total size of the text in the collection.

However, we’ve ignored positional and frequency information.

For this reason, space savings are less in reality.

57 / 59

Take-away today

Motivation for compression in information retrieval systems

How can we compress the dictionary component of the
inverted index?

How can we compress the postings component of the inverted
index?

Term statistics: how are terms distributed in document
collections?

58 / 59

Resources

Chapter 5 of IIR

Resources at http://cislmu.org

Original publication on word-aligned binary codes by Anh and
Moffat (2005); also: Anh and Moffat (2006a)
Original publication on variable byte codes by Scholer,
Williams, Yiannis and Zobel (2002)
More details on compression (including compression of
positions and frequencies) in Zobel and Moffat (2006)

59 / 59

http://cislmu.org

	Recap
	Compression
	Term statistics
	Dictionary compression
	Postings compression

