Introduction to Information Retrieval http://informationretrieval.org

IIR 5: Index Compression

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-17

Overview

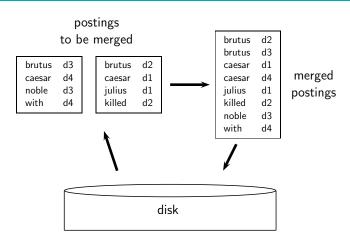
- Recap
- 2 Compression
- Term statistics
- 4 Dictionary compression
- 6 Postings compression

Outline

Recap

- Recap
- Compression
- 3 Term statistics
- 4 Dictionary compression
- 6 Postings compression

Blocked Sort-Based Indexing

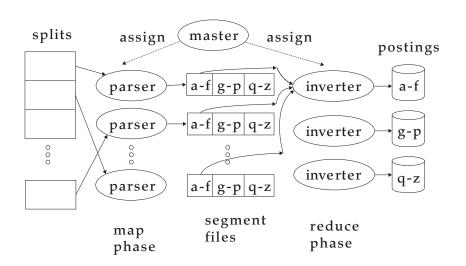


- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.
- These separate indexes can then be merged into one big index.

SPIMI-Invert

```
SPIMI-INVERT(token_stream)
     output\_file \leftarrow NewFile()
     dictionary \leftarrow NewHash()
     while (free memory available)
     do token \leftarrow next(token\_stream)
  5
         if term(token) ∉ dictionary
           then postings_list \leftarrow ADDTODICTIONARY(dictionary, term(token))
  6
           else postings_list \leftarrow GETPOSTINGSLIST(dictionary, term(token))
  8
         if full(postings_list)
           then postings_list \leftarrow DOUBLEPOSTINGSLIST(dictionary,term(token)
         ADDToPostingsList(postings_list,doclD(token))
10
11
     sorted\_terms \leftarrow SortTerms(dictionary)
     WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
12
13
     return output_file
```

MapReduce for index construction



Dynamic indexing: Simplest approach

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index

Take-away today

For each term t, we store a list of all documents that contain t. → 1 2 4 11 31 45 173 174 5 6 16 57 132 dictionary postings file

• Motivation for compression in information retrieval systems

Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?

Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics: how are terms distributed in document collections?

- Recap
- 2 Compression
- 3 Term statistics
- 4 Dictionary compression
- 6 Postings compression

Use less disk space (saves money)

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (again, increases speed)

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (again, increases speed)
 - [read compressed data and decompress in memory] is faster than [read uncompressed data]

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (again, increases speed)
 - [read compressed data and decompress in memory] is faster than [read uncompressed data]
- Premise: Decompression algorithms are fast.

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (again, increases speed)
 - [read compressed data and decompress in memory] is faster than [read uncompressed data]
- Premise: Decompression algorithms are fast.
- This is true of the decompression algorithms we will use.

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (again, increases speed)
 - [read compressed data and decompress in memory] is faster than [read uncompressed data]
- Premise: Decompression algorithms are fast.
- This is true of the decompression algorithms we will use.

• First, we will consider space for dictionary

- First, we will consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory

- First, we will consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory
- Then for the postings file

- First, we will consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory
- Then for the postings file
 - Motivation: reduce disk space needed, decrease time needed to read from disk

- First, we will consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory
- Then for the postings file
 - Motivation: reduce disk space needed, decrease time needed to read from disk
 - Note: Large search engines keep significant part of postings in memory

- First, we will consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory
- Then for the postings file
 - Motivation: reduce disk space needed, decrease time needed to read from disk
 - Note: Large search engines keep significant part of postings in memory
- We will devise various compression schemes for dictionary and postings.

• Lossy compression: Discard some information

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:
 - downcasing, stop words, porter, number elimination

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:
 - downcasing, stop words, porter, number elimination
- Lossless compression: All information is preserved.

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:
 - downcasing, stop words, porter, number elimination
- Lossless compression: All information is preserved.
 - What we mostly do in index compression

- Recap
- 2 Compression
- 3 Term statistics
- 4 Dictionary compression
- 6 Postings compression

Model collection: The Reuters collection

symbol	statistic	value
N	documents	800,000
L	avg. # word tokens per document	200
Μ	word types	400,000
	avg. # bytes per word token (incl. spaces/punct.)	6
	avg. # bytes per word token (without spaces/punct.)	4.5
	avg. # bytes per word type	7.5
T	non-positional postings	100,000,000

Effect of preprocessing for Reuters

	word types	non-positional	positional postings
	(terms)	postings	(word tokens)
size of	dictionary	non-positional index	positional index
	size ∆cml	size Δ cml	size Δ cml
unfiltered	484,494	109,971,179	197,879,290
no numbers	473,723 -2 -2	100,680,242 -8 -8	179,158,204 -9 -9
case folding	391,523 - 17 - 19	96,969,056 -3 -12	179,158,204 -0 -9
30 stopw's	391,493 -0 -19	83,390,443-14 -24	121,857,825 -31 -38
150 stopw's	391,373 -0 -19	67,001,847-30 -39	94,516,599 -47 -52
stemming	322,383 - 17 - 33	63,812,300 -4 -42	94,516,599 -0 -52

Explain differences between numbers non-positional vs positional: -3 vs -0, -14 vs -31, -30 vs -47, -4 vs -0

That is, how many distinct words are there?

- That is, how many distinct words are there?
- Can we assume there is an upper bound?

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- \bullet Not really: At least $70^{20}\approx 10^{37}$ different words of length 20.

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection.

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: $30 \le k \le 100$ and $b \approx 0.5$.

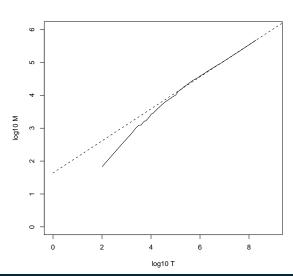
- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: 30 < k < 100and $b \approx 0.5$.
- Heaps' law is linear in log-log space.

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: 30 < k < 100and $b \approx 0.5$.
- Heaps' law is linear in log-log space.
 - It is the simplest possible relationship between collection size and vocabulary size in log-log space.

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: $30 \le k \le 100$ and $b \approx 0.5$.
- Heaps' law is linear in log-log space.
 - It is the simplest possible relationship between collection size and vocabulary size in log-log space.
 - Empirical law

Heaps' law for Reuters

Term statistics



Vocabulary size M as a function of collection size T (number of tokens) for Reuters-RCV1. For these data, the dashed line $\log_{10} M =$ $0.49 * log_{10} T + 1.64$ is the best least squares fit. Thus, $M = 10^{1.64} T^{0.49}$ and $k=10^{1.64}\approx 44$ and b = 0.49.

Empirical fit for Reuters

• Good, as we just saw in the graph.

- Good, as we just saw in the graph.
- Example: for the first 1,000,020 tokens Heaps' law predicts 38,323 terms:

$$44 \times 1,000,020^{0.49} \approx 38,323$$

Empirical fit for Reuters

- Good, as we just saw in the graph.
- Example: for the first 1,000,020 tokens Heaps' law predicts 38,323 terms:

$$44 \times 1,000,020^{0.49} \approx 38,323$$

 The actual number is 38,365 terms, very close to the prediction.

Empirical fit for Reuters

Good, as we just saw in the graph.

Term statistics

• Example: for the first 1,000,020 tokens Heaps' law predicts 38.323 terms:

$$44 \times 1,000,020^{0.49} \approx 38,323$$

- The actual number is 38,365 terms, very close to the prediction.
- Empirical observation: fit is good in general.

Compression Term statistics Dictionary compression Postings com

Exercise

- What is the effect of including spelling errors vs. automatically correcting spelling errors on Heaps' law?
- Compute vocabulary size M
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
 - Assume a search engine indexes a total of 20,000,000,000 (2×10^{10}) pages, containing 200 tokens on average
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

• Now we have characterized the growth of the vocabulary in collections.

- Now we have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.

- Now we have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.

- Now we have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The i^{th} most frequent term has frequency cf_i proportional to 1/i.

- Now we have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The i^{th} most frequent term has frequency cf_i proportional to 1/i.
- cf_i $\propto \frac{1}{i}$

- Now we have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The i^{th} most frequent term has frequency cf_i proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf_i is collection frequency: the number of occurrences of the term t_i in the collection.

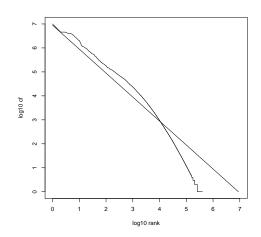
- Zipf's law: The i^{th} most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (*the*) occurs cf_1 times, then the second most frequent term (*of*) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \ldots$

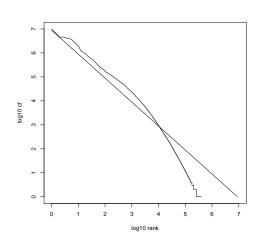
Term statistics

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$
- ... and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.

- Zipf's law: The i^{th} most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$
- ...and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- Equivalent: $cf_i = ci^k$ and $\log cf_i = \log c + k \log i$ (for k = -1)

- Zipf's law: The i^{th} most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$
- ...and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- Equivalent: $cf_i = ci^k$ and $\log cf_i = \log c + k \log i$ (for k = -1)
- Example of a power law





Fit is not great. What important is the key insight: Few frequent terms, many rare terms.

Outline

- Recap
- 2 Compression
- Term statistics
- 4 Dictionary compression
- 6 Postings compression

• The dictionary is small compared to the postings file.

- The dictionary is small compared to the postings file.
- But we want to keep it in memory.

- The dictionary is small compared to the postings file.
- But we want to keep it in memory.
- Also: competition with other applications, cell phones, onboard computers, fast startup time

- The dictionary is small compared to the postings file.
- But we want to keep it in memory.
- Also: competition with other applications, cell phones, onboard computers, fast startup time
- So compressing the dictionary is important.

Recall: Dictionary as array of fixed-width entries

Recall: Dictionary as array of fixed-width entries

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow

space needed: 20 bytes 4 bytes

4 bytes

Space for Reuters: (20+4+4)*400,000 = 11.2 MB

• Most of the bytes in the term column are wasted.

- Most of the bytes in the term column are wasted.
 - We allot 20 bytes for terms of length 1.

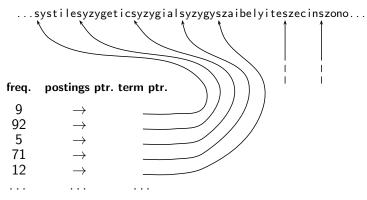
- Most of the bytes in the term column are wasted.
 - We allot 20 bytes for terms of length 1.
- We can't handle HYDROCHLOROFLUOROCARBONS and SUPERCALIFRAGILISTICEXPIALIDOCIOUS

- Most of the bytes in the term column are wasted.
 - We allot 20 bytes for terms of length 1.
- We can't handle HYDROCHLOROFLUOROCARBONS and SUPERCALIFRAGILISTICEXPIALIDOCIOUS
- Average length of a term in English: 8 characters (or a little bit less)

- Most of the bytes in the term column are wasted.
 - We allot 20 bytes for terms of length 1.
- We can't handle HYDROCHLOROFLUOROCARBONS and SUPERCALIFRAGILISTICEXPIALIDOCIOUS
- Average length of a term in English: 8 characters (or a little bit less)
- How can we use on average 8 characters per term?

Dictionary as a string

Dictionary as a string



4 bytes 4 bytes 3 bytes

• 4 bytes per term for frequency

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list
- 8 bytes (on average) for term in string

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list
- 8 bytes (on average) for term in string
- 3 bytes per pointer into string (need $\log_2 8 \cdot 400000 < 24$ bits to resolve 8 · 400,000 positions)

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list
- 8 bytes (on average) for term in string
- 3 bytes per pointer into string (need $log_2 8 \cdot 400000 < 24$ bits to resolve 8 · 400,000 positions)
- Space: $400,000 \times (4+4+3+8) = 7.6MB$ (compared to 11.2) MB for fixed-width array)

Dictionary as a string with blocking

...7systile9syzygetic8syzygial6syzygy11szaibelyite6szecin... freq. postings ptr. term ptr. 92 5 71 12

• Example block size k = 4

- Example block size k = 4
- Where we used 4×3 bytes for term pointers without blocking . . .

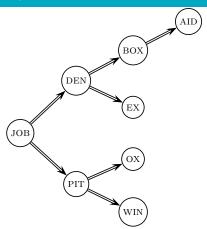
- Example block size k=4
- Where we used 4×3 bytes for term pointers without blocking . . .
- ...we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.

- Example block size k=4
- Where we used 4×3 bytes for term pointers without blocking . . .
- ...we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save 12 (3 + 4) = 5 bytes per block.

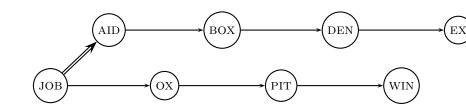
- Example block size k=4
- Where we used 4×3 bytes for term pointers without blocking . . .
- ...we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save 12 (3 + 4) = 5 bytes per block.
- Total savings: 400,000/4 * 5 = 0.5 MB

- Example block size k = 4
- Where we used 4×3 bytes for term pointers without blocking . . .
- ... we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save 12 (3 + 4) = 5 bytes per block.
- Total savings: 400,000/4 * 5 = 0.5 MB
- This reduces the size of the dictionary from 7.6 MB to 7.1 MB.

Lookup of a term without blocking



Lookup of a term with blocking: (slightly) slower



Front coding

One block in blocked compression $(k = 4) \dots$ 8 automata 8 automate 9 automatic 10 automation

... further compressed with front coding.

8 automat * a 1 \diamond e 2 \diamond i c 3 \diamond i o n

Dictionary compression for Reuters: Summary

Dictionary compression for Reuters: Summary

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9

Exercise

- Which prefixes should be used for front coding? What are the tradeoffs?
- Input: list of terms (= the term vocabulary)
- Output: list of prefixes that will be used in front coding

Outline

- Postings compression

• The postings file is much larger than the dictionary, factor of at least 10.

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly
- A posting for our purposes is a doclD.

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly
- A posting for our purposes is a doclD.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use $\log_2 800,000 \approx 19.6 < 20$ bits per docID.

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use $\log_2 800,000 \approx 19.6 < 20$ bits per docID.
- Our goal: use a lot less than 20 bits per docID.

• Each postings list is ordered in increasing order of docID.

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202,

. . .

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202, . . .
- It suffices to store gaps: 283159-283154=5, 283202-283159=43

ey idea. Store gaps histead of docids

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202, ...
- It suffices to store gaps: 283159-283154=5, 283202-283159=43
- Example postings list using gaps: COMPUTER: 283154, 5, 43, ...

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202, ...
- It suffices to store gaps: 283159-283154=5, 283202-283159=43
- Example postings list using gaps: COMPUTER: 283154, 5,
 43, ...
- Gaps for frequent terms are small.

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202. . . .
- It suffices to store gaps: 283159-283154=5, 283202-283159=43
- Example postings list using gaps: COMPUTER: 283154, 5, 43. . . .
- Gaps for frequent terms are small.
- Thus: We can encode small gaps with fewer than 20 bits.

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

• Aim:

- Aim:
 - For ARACHNOCENTRIC and other rare terms, we will use about 20 bits per gap (= posting).

Aim:

- For ARACHNOCENTRIC and other rare terms, we will use about 20 bits per gap (= posting).
- For THE and other very frequent terms, we will use only a few bits per gap (= posting).

- Aim:
 - For ARACHNOCENTRIC and other rare terms, we will use about 20 bits per gap (= posting).
 - For THE and other very frequent terms, we will use only a few bits per gap (= posting).
- In order to implement this, we need to devise some form of variable length encoding.

- Aim:
 - For ARACHNOCENTRIC and other rare terms, we will use about 20 bits per gap (= posting).
 - For THE and other very frequent terms, we will use only a few bits per gap (= posting).
- In order to implement this, we need to devise some form of variable length encoding.
- Variable length encoding uses few bits for small gaps and many bits for large gaps.

• Used by many commercial/research systems

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).
- Dedicate 1 bit (high bit) to be a continuation bit c.

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).
- Dedicate 1 bit (high bit) to be a continuation bit c.
- If the gap G fits within 7 bits, binary-encode it in the 7 available bits and set c=1.

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).
- Dedicate 1 bit (high bit) to be a continuation bit c.
- If the gap G fits within 7 bits, binary-encode it in the 7 available bits and set c=1.
- Else: encode lower-order 7 bits and then use one or more additional bytes to encode the higher order bits using the same algorithm.

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).
- Dedicate 1 bit (high bit) to be a continuation bit c.
- If the gap G fits within 7 bits, binary-encode it in the 7 available bits and set c = 1.
- Else: encode lower-order 7 bits and then use one or more additional bytes to encode the higher order bits using the same algorithm.
- At the end set the continuation bit of the last byte to 1 (c = 1) and of the other bytes to 0 (c = 0).

VB code examples

docIDs	824	829	215406
gaps		5	214577
VB code	00000110 10111000	10000101	00001101 00001100 10110001

return bytes

VB code encoding algorithm

```
VBENCODENUMBER(n)

1 bytes \leftarrow \langle \rangle

2 while true

3 do PREPEND(bytes, n \mod 128)

4 if n < 128

5 then BREAK

6 n \leftarrow n \text{ div } 128

7 bytes[LENGTH(bytes)] += 128
```

```
VBENCODE(numbers)
```

- 1 bytestream $\leftarrow \langle \rangle$
- 2 **for each** $n \in numbers$
- 3 do bytes ← VBENCODENUMBER(n)
 4 bytestream ← EXTEND(bytestream, bytes)
 - 5 return bytestream

VB code decoding algorithm

```
VBDecode(bytestream)
     numbers \leftarrow \langle \rangle
   n \leftarrow 0
     for i \leftarrow 1 to Length(bytestream)
     do if bytestream[i] < 128
5
            then n \leftarrow 128 \times n + bytestream[i]
            else n \leftarrow 128 \times n + (bytestream[i] - 128)
6
                   APPEND(numbers, n)
8
                   n \leftarrow 0
9
     return numbers
```

 Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles) etc

Other variable codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles) etc
- Variable byte alignment wastes space if you have many small gaps – nibbles do better on those.

Other variable codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles) etc
- Variable byte alignment wastes space if you have many small gaps – nibbles do better on those.
- There is work on word-aligned codes that efficiently "pack" a variable number of gaps into one word – see resources at the end

 You can get even more compression with another type of variable length encoding: bitlevel code.

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code
 - Represent n as n 1s with a final 0.

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code
 - Represent n as n 1s with a final 0.
 - Unary code for 3 is 1110

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code
 - Represent *n* as *n* 1s with a final 0.
 - Unary code for 3 is 1110
 - Unary code for 40 is

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code
 - Represent *n* as *n* 1s with a final 0.
 - Unary code for 3 is 1110
 - Unary code for 40 is
 - Unary code for 70 is:

• Represent a gap G as a pair of length and offset.

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- For example $13 \rightarrow 1101 \rightarrow 101 = \text{offset}$

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- ullet For example 13
 ightarrow 1101
 ightarrow 101 = offset
- Length is the length of offset.

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- For example $13 \rightarrow 1101 \rightarrow 101 = \text{offset}$
- Length is the length of offset.
- For 13 (offset 101), this is 3.

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- For example $13 \rightarrow 1101 \rightarrow 101 = \text{offset}$
- Length is the length of offset.
- For 13 (offset 101), this is 3.
- Encode length in unary code: 1110.

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- For example $13 \rightarrow 1101 \rightarrow 101 = \text{offset}$
- Length is the length of offset.
- For 13 (offset 101), this is 3.
- Encode length in unary code: 1110.
- Gamma code of 13 is the concatenation of length and offset: 1110101.

11110,1000

111111110,11111111

11111111110,0000000001

number unary code length offset γ code n 10,0 10,1 110,00 1110,001 1110.101

Exercise

- Compute the variable byte code of 130
- Compute the gamma code of 130

• The length of *offset* is $|\log_2 G|$ bits.

- The length of *offset* is $\lfloor \log_2 G \rfloor$ bits.
- The length of *length* is $\lfloor \log_2 G \rfloor + 1$ bits,

- The length of *offset* is $|\log_2 G|$ bits.
- The length of *length* is $|\log_2 G| + 1$ bits,
- So the length of the entire code is $2 \times |\log_2 G| + 1$ bits.

- The length of *offset* is $\lfloor \log_2 G \rfloor$ bits.
- The length of *length* is $|\log_2 G| + 1$ bits,
- So the length of the entire code is $2 \times |\log_2 G| + 1$ bits.
- \bullet γ codes are always of odd length.

- The length of *offset* is $|\log_2 G|$ bits.
- The length of *length* is $\lfloor \log_2 G \rfloor + 1$ bits,
- So the length of the entire code is $2 \times \lfloor \log_2 G \rfloor + 1$ bits.
- ullet γ codes are always of odd length.
- Gamma codes are within a factor of 2 of the optimal encoding length log₂ G.

- The length of *offset* is $\lfloor \log_2 G \rfloor$ bits.
- The length of *length* is $|\log_2 G| + 1$ bits,
- So the length of the entire code is $2 \times |\log_2 G| + 1$ bits.
- \bullet γ codes are always of odd length.
- Gamma codes are within a factor of 2 of the optimal encoding length $\log_2 G$.
 - (assuming the frequency of a gap G is proportional to $\log_2 G$ only approximately true)

• Gamma code (like variable byte code) is prefix-free: a valid code word is not a prefix of any other valid code.

- Gamma code (like variable byte code) is prefix-free: a valid code word is not a prefix of any other valid code.
- Encoding is optimal within a factor of 3 (and within a factor of 2 making additional assumptions).

- Gamma code (like variable byte code) is prefix-free: a valid code word is not a prefix of any other valid code.
- Encoding is optimal within a factor of 3 (and within a factor of 2 making additional assumptions).
- This result is independent of the distribution of gaps!

- Gamma code (like variable byte code) is prefix-free: a valid code word is not a prefix of any other valid code.
- Encoding is optimal within a factor of 3 (and within a factor of 2 making additional assumptions).
- This result is independent of the distribution of gaps!
- We can use gamma codes for any distribution. Gamma code is universal.

- Gamma code (like variable byte code) is prefix-free: a valid code word is not a prefix of any other valid code.
- Encoding is optimal within a factor of 3 (and within a factor of 2 making additional assumptions).
- This result is independent of the distribution of gaps!
- We can use gamma codes for any distribution. Gamma code is universal.
- Gamma code is parameter-free.

Gamma codes: Alignment

■ Machines have word boundaries – 8, 16, 32 bits

Gamma codes: Alignment

- Machines have word boundaries 8, 16, 32 bits
- Compressing and manipulating at granularity of bits can be slow.

Gamma codes: Alignment

- Machines have word boundaries 8, 16, 32 bits
- Compressing and manipulating at granularity of bits can be slow.
- Variable byte encoding is aligned and thus potentially more efficient.

Gamma codes: Alignment

- Machines have word boundaries 8, 16, 32 bits
- Compressing and manipulating at granularity of bits can be slow.
- Variable byte encoding is aligned and thus potentially more efficient.
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost.

Compression of Reuters

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking $\&$ front coding	5.9
collection (text, xml markup etc)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

Term-document incidence matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

. . .

Entry is 1 if term occurs. Example: Calpurnia occurs in *Julius Caesar*. Entry is 0 if term doesn't occur. Example: Calpurnia doesn't occur in *The tempest*.

250.0 116.0

101.0

size in MB data structure 11.2 dictionary, fixed-width 7.6 dictionary, term pointers into string \sim , with blocking, k=47.1 \sim , with blocking & front coding 5.9 collection (text, xml markup etc) 3600.0 collection (text) 960.0 T/D incidence matrix 40,000.0 400.0 postings, uncompressed (32-bit words)

postings, uncompressed (20 bits)

postings, variable byte encoded

postings, γ encoded

Compression of Reuters

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking $\&$ front coding	5.9
collection (text, xml markup etc)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

 We can now create an index for highly efficient Boolean retrieval that is very space efficient.

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 10-15% of the total size of the text in the collection.

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 10-15% of the total size of the text in the collection.
- However, we've ignored positional and frequency information.

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 10-15% of the total size of the text in the collection.
- However, we've ignored positional and frequency information.
- For this reason, space savings are less in reality.

Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics: how are terms distributed in document collections?

Resources

- Chapter 5 of IIR
- Resources at http://cislmu.org
 - Original publication on word-aligned binary codes by Anh and Moffat (2005); also: Anh and Moffat (2006a)
 - Original publication on variable byte codes by Scholer, Williams, Yiannis and Zobel (2002)
 - More details on compression (including compression of positions and frequencies) in Zobel and Moffat (2006)