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Naive Bayes classification rule

cmap = argmax
c∈C

[ log P̂(c) +
∑

1≤k≤nd

log P̂(tk |c)]

Each conditional parameter log P̂(tk |c) is a weight that
indicates how good an indicator tk is for c .

The prior log P̂(c) is a weight that indicates the relative
frequency of c .

The sum of log prior and term weights is then a measure of
how much evidence there is for the document being in the
class.

We select the class with the most evidence.
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Parameter estimation

Prior:

P̂(c) =
Nc

N

where Nc is the number of docs in class c and N the total
number of docs

Conditional probabilities:

P̂(t|c) =
Tct + 1∑

t′∈V (Tct′ + 1)

where Tct is the number of tokens of t in training documents
from class c (includes multiple occurrences)
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Add-one smoothing to avoid zeros

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

Without add-one smoothing: if there are no occurrences of WTO in
documents in class China, we get a zero estimate for the corresponding
parameter:

P̂(WTO|China) =
TChina,WTO∑
t′∈V TChina,t′

= 0

With this estimate: [d contains WTO] → [P(China|d) = 0].
We must smooth to get a better estimate P(China|d) > 0.
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Naive Bayes Generative Model

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

P(c |d) ∝ P(c)
∏

1≤k≤nd
P(tk |c)

Generate a class with probability P(c)
Generate each of the words (in their respective positions), conditional
on the class, but independent of each other, with probability P(tk |c)

Schütze: Language models for IR 7 / 50



Recap Feature selection Language models Language Models for IR Discussion

Take-away today
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Feature selection for text classification: How to select a subset
of available dimensions

Statistical language models: Introduction

Statistical language models in IR

Discussion: Properties of different probabilistic models in use
in IR
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Feature selection
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Feature selection
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high-dimensional space, with each dimension corresponding to
a term.

Schütze: Language models for IR 10 / 50



Recap Feature selection Language models Language Models for IR Discussion

Feature selection

In text classification, we usually represent documents in a
high-dimensional space, with each dimension corresponding to
a term.

In this lecture: axis = dimension = word = term = feature

Schütze: Language models for IR 10 / 50



Recap Feature selection Language models Language Models for IR Discussion

Feature selection

In text classification, we usually represent documents in a
high-dimensional space, with each dimension corresponding to
a term.

In this lecture: axis = dimension = word = term = feature

Many dimensions correspond to rare words.

Schütze: Language models for IR 10 / 50



Recap Feature selection Language models Language Models for IR Discussion

Feature selection

In text classification, we usually represent documents in a
high-dimensional space, with each dimension corresponding to
a term.

In this lecture: axis = dimension = word = term = feature

Many dimensions correspond to rare words.

Rare words can mislead the classifier.

Schütze: Language models for IR 10 / 50



Recap Feature selection Language models Language Models for IR Discussion

Feature selection

In text classification, we usually represent documents in a
high-dimensional space, with each dimension corresponding to
a term.

In this lecture: axis = dimension = word = term = feature

Many dimensions correspond to rare words.

Rare words can mislead the classifier.

Rare misleading features are called noise features.

Schütze: Language models for IR 10 / 50



Recap Feature selection Language models Language Models for IR Discussion

Feature selection

In text classification, we usually represent documents in a
high-dimensional space, with each dimension corresponding to
a term.

In this lecture: axis = dimension = word = term = feature

Many dimensions correspond to rare words.

Rare words can mislead the classifier.

Rare misleading features are called noise features.

Eliminating noise features from the representation increases
efficiency and effectiveness of text classification.

Schütze: Language models for IR 10 / 50



Recap Feature selection Language models Language Models for IR Discussion

Feature selection

In text classification, we usually represent documents in a
high-dimensional space, with each dimension corresponding to
a term.

In this lecture: axis = dimension = word = term = feature

Many dimensions correspond to rare words.

Rare words can mislead the classifier.

Rare misleading features are called noise features.

Eliminating noise features from the representation increases
efficiency and effectiveness of text classification.

Eliminating features is called feature selection.

Schütze: Language models for IR 10 / 50



Recap Feature selection Language models Language Models for IR Discussion

Example for a noise feature

Schütze: Language models for IR 11 / 50



Recap Feature selection Language models Language Models for IR Discussion

Example for a noise feature

Let’s say we’re doing text classification for the class China.

Schütze: Language models for IR 11 / 50



Recap Feature selection Language models Language Models for IR Discussion

Example for a noise feature

Let’s say we’re doing text classification for the class China.

Suppose a rare term, say arachnocentric, has no
information about China . . .

Schütze: Language models for IR 11 / 50



Recap Feature selection Language models Language Models for IR Discussion

Example for a noise feature

Let’s say we’re doing text classification for the class China.

Suppose a rare term, say arachnocentric, has no
information about China . . .

. . . but all instances of arachnocentric happen to occur in
China documents in our training set.

Schütze: Language models for IR 11 / 50



Recap Feature selection Language models Language Models for IR Discussion

Example for a noise feature

Let’s say we’re doing text classification for the class China.

Suppose a rare term, say arachnocentric, has no
information about China . . .

. . . but all instances of arachnocentric happen to occur in
China documents in our training set.

Then we may learn a classifier that incorrectly interprets
arachnocentric as evidence for the class China.

Schütze: Language models for IR 11 / 50



Recap Feature selection Language models Language Models for IR Discussion

Example for a noise feature

Let’s say we’re doing text classification for the class China.

Suppose a rare term, say arachnocentric, has no
information about China . . .

. . . but all instances of arachnocentric happen to occur in
China documents in our training set.

Then we may learn a classifier that incorrectly interprets
arachnocentric as evidence for the class China.

Such an incorrect generalization from an accidental property
of the training set is called overfitting.

Schütze: Language models for IR 11 / 50



Recap Feature selection Language models Language Models for IR Discussion

Example for a noise feature

Let’s say we’re doing text classification for the class China.

Suppose a rare term, say arachnocentric, has no
information about China . . .

. . . but all instances of arachnocentric happen to occur in
China documents in our training set.

Then we may learn a classifier that incorrectly interprets
arachnocentric as evidence for the class China.

Such an incorrect generalization from an accidental property
of the training set is called overfitting.

Feature selection reduces overfitting and improves the
accuracy of the classifier.
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Basic feature selection algorithm

SelectFeatures(D, c , k)
1 V ← ExtractVocabulary(D)
2 L← []
3 for each t ∈ V

4 do A(t, c)← ComputeFeatureUtility(D, t, c)
5 Append(L, 〈A(t, c), t〉)
6 return FeaturesWithLargestValues(L, k)

How do we compute A, the feature utility?

Schütze: Language models for IR 12 / 50



Recap Feature selection Language models Language Models for IR Discussion

Different feature selection methods

A feature selection method is mainly defined by the feature
utility measure it employs

Schütze: Language models for IR 13 / 50



Recap Feature selection Language models Language Models for IR Discussion

Different feature selection methods

A feature selection method is mainly defined by the feature
utility measure it employs

Feature utility measures:

Schütze: Language models for IR 13 / 50



Recap Feature selection Language models Language Models for IR Discussion

Different feature selection methods

A feature selection method is mainly defined by the feature
utility measure it employs

Feature utility measures:

Frequency – select the most frequent terms

Schütze: Language models for IR 13 / 50



Recap Feature selection Language models Language Models for IR Discussion

Different feature selection methods

A feature selection method is mainly defined by the feature
utility measure it employs

Feature utility measures:

Frequency – select the most frequent terms
Mutual information – select the terms with the highest mutual
information

Schütze: Language models for IR 13 / 50



Recap Feature selection Language models Language Models for IR Discussion

Different feature selection methods

A feature selection method is mainly defined by the feature
utility measure it employs

Feature utility measures:

Frequency – select the most frequent terms
Mutual information – select the terms with the highest mutual
information
Mutual information is also called information gain in this
context.

Schütze: Language models for IR 13 / 50



Recap Feature selection Language models Language Models for IR Discussion

Different feature selection methods

A feature selection method is mainly defined by the feature
utility measure it employs

Feature utility measures:

Frequency – select the most frequent terms
Mutual information – select the terms with the highest mutual
information
Mutual information is also called information gain in this
context.
Chi-square (see book)
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Compute the feature utility A(t, c) as the mutual information
(MI) of term t and class c .
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Mutual information

Compute the feature utility A(t, c) as the mutual information
(MI) of term t and class c .

MI tells us “how much information” the term contains about
the class and vice versa.

For example, if a term’s occurrence is independent of the class
(same proportion of docs within/without class contain the
term), then MI is 0.

Definition:

I (U ;C )=
∑

et∈{1,0}

∑

ec∈{1,0}

P(U=et ,C =ec) log2
P(U=et ,C=ec)

P(U=et)P(C =ec)
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How to compute MI values

Based on maximum likelihood estimates, the formula we
actually use is:

I (U;C ) =
N11

N
log2

NN11

N1.N.1
+

N01

N
log2

NN01

N0.N.1

+
N10

N
log2

NN10

N1.N.0
+

N00

N
log2

NN00

N0.N.0
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How to compute MI values

Based on maximum likelihood estimates, the formula we
actually use is:

I (U;C ) =
N11

N
log2

NN11

N1.N.1
+

N01

N
log2

NN01

N0.N.1

+
N10

N
log2

NN10

N1.N.0
+

N00

N
log2

NN00

N0.N.0

N10: number of documents that contain t (et = 1) and are
not in c (ec = 0); N11: number of documents that contain t

(et = 1) and are in c (ec = 1); N01: number of documents
that do not contain t (et = 1) and are in c (ec = 1); N00:
number of documents that do not contain t (et = 1) and are
not in c (ec = 1); N = N00 + N01 + N10 + N11.
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How to compute MI values (2)

Alternative way of computing MI:

I (U ;C )=
∑

et∈{1,0}

∑

ec∈{1,0}

P(U=et ,C=ec) log2
N(U=et ,C=ec)

E (U=et)E (C=ec)

N(U=et ,C=ec) is the count of documents with values et
and ec .

E (U=et ,C =ec) is the expected count of documents with
values et and ec if we assume that the two random variables
are independent.
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MI example for poultry/export in Reuters

ec = epoultry = 1 ec = epoultry = 0
et = eexport = 1 N11 = 49 N10 = 27,652
et = eexport = 0 N01 = 141 N00 = 774,106

Plug these values into formula:

I (U;C ) =
49

801,948
log2

801,948 · 49

(49+27,652)(49+141)

+
141

801,948
log2

801,948 · 141

(141+774,106)(49+141)

+
27,652

801,948
log2

801,948 · 27,652

(49+27,652)(27,652+774,106)

+
774,106

801,948
log2

801,948 · 774,106

(141+774,106)(27,652+774,106)

≈ 0.000105
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MI feature selection on Reuters
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MI feature selection on Reuters

Class: coffee

term MI

coffee 0.0111
bags 0.0042
growers 0.0025
kg 0.0019
colombia 0.0018
brazil 0.0016
export 0.0014
exporters 0.0013
exports 0.0013
crop 0.0012

Class: sports

term MI

soccer 0.0681
cup 0.0515
match 0.0441
matches 0.0408
played 0.0388
league 0.0386
beat 0.0301
game 0.0299
games 0.0284
team 0.0264
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Naive Bayes: Effect of feature selection
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Feature selection for Naive Bayes

In general, feature selection is necessary for Naive Bayes to
get decent performance.
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Feature selection for Naive Bayes

In general, feature selection is necessary for Naive Bayes to
get decent performance.

Also true for many other learning methods in text
classification: you need feature selection for optimal
performance.
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Exercise

(i) Compute the “export”/POULTRY contingency table for the
“Kyoto”/JAPAN in the collection given below. (ii) Make up a
contingency table for which MI is 0 – that is, term and class are
independent of each other.

“export”/POULTRY table:

ec = epoultry = 1 ec = epoultry = 0
et = eexport = 1 N11 = 49 N10 = 27,652
et = eexport = 0 N01 = 141 N00 = 774,106

Collection:
docID words in document in c = Japan?

training set 1 Kyoto Osaka Taiwan yes
2 Japan Kyoto yes
3 Taipei Taiwan no
4 Macao Taiwan Shanghai no
5 London no
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Using language models (LMs) for IR

1 LM = language model

2 We view the document as a generative model that generates
the query.

3 What we need to do:
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Using language models (LMs) for IR

1 LM = language model

2 We view the document as a generative model that generates
the query.

3 What we need to do:

4 Define the precise generative model we want to use

5 Estimate parameters (different parameters for each
document’s model)

6 Smooth to avoid zeros

7 Apply to query and find document most likely to have
generated the query

8 Present most likely document(s) to user

9 Note that 4–7 is very similar to what we did in Naive Bayes.
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What is a language model?
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What is a language model?

We can view a finite state automaton as a deterministic language
model.

I wish

I wish I wish I wish I wish . . .

Cannot generate: “wish I wish” or “I wish I”

Our basic model: each document was generated by a different
automaton like this except that these automata are probabilistic.
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A probabilistic language model

q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.
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A probabilistic language model

q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
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frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
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STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said

P(string) = 0.01
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q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.
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This is a one-state probabilistic finite-state automaton – a unigram
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STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.
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w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad
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q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad

P(string) = 0.01 ·0.03 ·0.04 ·0.01
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the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes

P(string) = 0.01 ·0.03 ·0.04 ·0.01
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This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
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w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02
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w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog STOP
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q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
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A probabilistic language model

q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048
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A different language model for each document

language model of d1 language model of d2
w P(w |.) w P(w |.)

STOP .2 toad .01
the .2 said .03
a .1 likes .02
frog .01 that .04

. . . . . .

w P(w |.) w P(w |.)

STOP .2 toad .02
the .15 said .03
a .08 likes .02
frog .01 that .05

. . . . . .

query: frog said that toad likes frog STOP
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. . . . . .

w P(w |.) w P(w |.)

STOP .2 toad .02
the .15 said .03
a .08 likes .02
frog .01 that .05

. . . . . .

query: frog said that toad likes frog STOP

P(query|Md1) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048 = 4.8 · 10−12
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A different language model for each document

language model of d1 language model of d2
w P(w |.) w P(w |.)

STOP .2 toad .01
the .2 said .03
a .1 likes .02
frog .01 that .04

. . . . . .

w P(w |.) w P(w |.)

STOP .2 toad .02
the .15 said .03
a .08 likes .02
frog .01 that .05

. . . . . .

query: frog said that toad likes frog STOP

P(query|Md1) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048 = 4.8 · 10−12

P(query|Md2) = 0.01 ·0.03 ·0.05 ·0.02 ·0.02 ·0.01 ·0.2
= 0.0000000000120 = 12 · 10−12
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A different language model for each document

language model of d1 language model of d2
w P(w |.) w P(w |.)

STOP .2 toad .01
the .2 said .03
a .1 likes .02
frog .01 that .04

. . . . . .

w P(w |.) w P(w |.)

STOP .2 toad .02
the .15 said .03
a .08 likes .02
frog .01 that .05

. . . . . .

query: frog said that toad likes frog STOP

P(query|Md1) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048 = 4.8 · 10−12

P(query|Md2) = 0.01 ·0.03 ·0.05 ·0.02 ·0.02 ·0.01 ·0.2
= 0.0000000000120 = 12 · 10−12

P(query|Md1) < P(query|Md2) Thus, document d2 is “more
relevant” to the query “frog said that toad likes frog STOP” than
d1 is.
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Rank documents based on P(d |q)

P(d |q) =
P(q|d)P(d)

P(q)

P(q) is the same for all documents, so ignore

P(d) is the prior – often treated as the same for all d

But we can give a higher prior to “high-quality” documents,
e.g., those with high PageRank.
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P(q)

P(q) is the same for all documents, so ignore

P(d) is the prior – often treated as the same for all d

But we can give a higher prior to “high-quality” documents,
e.g., those with high PageRank.
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Using language models in IR

Each document is treated as (the basis for) a language model.

Given a query q

Rank documents based on P(d |q)

P(d |q) =
P(q|d)P(d)

P(q)

P(q) is the same for all documents, so ignore

P(d) is the prior – often treated as the same for all d

But we can give a higher prior to “high-quality” documents,
e.g., those with high PageRank.

P(q|d) is the probability of q given d .

For uniform prior: ranking documents according according to
P(q|d) and P(d |q) is equivalent.
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Where we are

In the LM approach to IR, we attempt to model the query
generation process.

Then we rank documents by the probability that a query
would be observed as a random sample from the respective
document model.

That is, we rank according to P(q|d).
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Where we are

In the LM approach to IR, we attempt to model the query
generation process.

Then we rank documents by the probability that a query
would be observed as a random sample from the respective
document model.

That is, we rank according to P(q|d).

Next: how do we compute P(q|d)?
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How to compute P(q|d)

We will make the same conditional independence assumption
as for Naive Bayes.

P(q|Md ) = P(〈t1, . . . , t|q|〉|Md ) =
∏

1≤k≤|q|

P(tk |Md )

(|q|: length of q; tk : the token occurring at position k in q)
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How to compute P(q|d)

We will make the same conditional independence assumption
as for Naive Bayes.

P(q|Md ) = P(〈t1, . . . , t|q|〉|Md ) =
∏

1≤k≤|q|

P(tk |Md )

(|q|: length of q; tk : the token occurring at position k in q)

This is equivalent to:

P(q|Md ) =
∏

distinct term t in q

P(t|Md)
tf t,q

tft,q: term frequency (# occurrences) of t in q

Multinomial model (omitting constant factor)
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tft,d
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(|d |: length of d ; tf t,d : # occurrences of t in d)
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Parameter estimation

Missing piece: Where do the parameters P(t|Md) come from?

Start with maximum likelihood estimates (as we did for Naive
Bayes)

P̂(t|Md) =
tft,d

|d |

(|d |: length of d ; tf t,d : # occurrences of t in d)

As in Naive Bayes, we have a problem with zeros.

A single t with P(t|Md) = 0 will make
P(q|Md) =

∏
P(t|Md) zero.

We would give a single term “veto power”.

For example, for query [Michael Jackson top hits] a document
about “top songs” (but not using the word “hits”) would have
P(q|Md) = 0. – Thats’s bad.
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Parameter estimation

Missing piece: Where do the parameters P(t|Md) come from?

Start with maximum likelihood estimates (as we did for Naive
Bayes)

P̂(t|Md) =
tft,d

|d |

(|d |: length of d ; tf t,d : # occurrences of t in d)

As in Naive Bayes, we have a problem with zeros.

A single t with P(t|Md) = 0 will make
P(q|Md) =

∏
P(t|Md) zero.

We would give a single term “veto power”.

For example, for query [Michael Jackson top hits] a document
about “top songs” (but not using the word “hits”) would have
P(q|Md) = 0. – Thats’s bad.

We need to smooth the estimates to avoid zeros.
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Key intuition: A nonoccurring term is possible (even though it
didn’t occur), . . .

. . . but no more likely than would be expected by chance in
the collection.

Notation: Mc : the collection model; cft : the number of
occurrences of t in the collection; T =

∑
t cf t : the total
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Smoothing

Key intuition: A nonoccurring term is possible (even though it
didn’t occur), . . .

. . . but no more likely than would be expected by chance in
the collection.

Notation: Mc : the collection model; cft : the number of
occurrences of t in the collection; T =

∑
t cf t : the total

number of tokens in the collection.

P̂(t|Mc) =
cf t

T

We will use P̂(t|Mc) to “smooth” P(t|d) away from zero.
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P(t|d) = λP(t|Md) + (1− λ)P(t|Mc)
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Jelinek-Mercer smoothing

P(t|d) = λP(t|Md) + (1− λ)P(t|Mc)

Mixes the probability from the document with the general
collection frequency of the word.

High value of λ: “conjunctive-like” search – tends to retrieve
documents containing all query words.

Low value of λ: more disjunctive, suitable for long queries

Correctly setting λ is very important for good performance.
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Jelinek-Mercer smoothing: Summary

P(q|d) ∝
∏

1≤k≤|q|

(λP(tk |Md) + (1− λ)P(tk |Mc))
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What we model: The user has a document in mind and
generates the query from this document.
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Jelinek-Mercer smoothing: Summary

P(q|d) ∝
∏

1≤k≤|q|

(λP(tk |Md) + (1− λ)P(tk |Mc))

What we model: The user has a document in mind and
generates the query from this document.

The equation represents the probability that the document
that the user had in mind was in fact this one.
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Query q: Michael Jackson

Use mixture model with λ = 1/2

P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003

P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013
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Example

Collection: d1 and d2

d1: Jackson was one of the most talented entertainers of all
time

d2: Michael Jackson anointed himself King of Pop

Query q: Michael Jackson

Use mixture model with λ = 1/2

P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003

P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

Ranking: d2 > d1
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Collection: d1 and d2

d1: Xerox reports a profit but revenue is down

d2: Lucene narrows quarter loss but revenue decreases further

Query q: revenue down

Use mixture model with λ = 1/2
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Exercise: Compute ranking

Collection: d1 and d2

d1: Xerox reports a profit but revenue is down

d2: Lucene narrows quarter loss but revenue decreases further

Query q: revenue down

Use mixture model with λ = 1/2

P(q|d1) = [(1/8 + 2/16)/2] · [(1/8 + 1/16)/2] = 1/8 · 3/32 =
3/256

P(q|d2) = [(1/8 + 2/16)/2] · [(0/8 + 1/16)/2] = 1/8 · 1/32 =
1/256

Ranking: d1 > d2
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tft,d + αP̂(t|Mc)

Ld + α
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Dirichlet smoothing

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α

The background distribution P̂(t|Mc) is the prior for P̂(t|d).

Intuition: Before having seen any part of the document we
start with the background distribution as our estimate.

As we read the document and count terms we update the
background distribution.

The weighting factor α determines how strong an effect the
prior has.
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Jelinek-Mercer or Dirichlet?

Dirichlet performs better for keyword queries, Jelinek-Mercer
performs better for verbose queries.

Both models are sensitive to the smoothing parameters – you
shouldn’t use these models without parameter tuning.
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Sensitivity of Dirichlet to smoothing parameter

µ is the Dirichlet smoothing parameter (called α on the previous
slides)
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Language models are generative models

We have assumed that queries are generated by a probabilistic
process that looks like this: (as in Naive Bayes)

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO
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We want to classify a query q.

Classes: e.g., geographical regions like China, UK, Kenya.
Each document in the collection is a different class.

Assume that d was generated by the generative model.
Assume that q was generated by a generative model

Key question: Which of the classes is most likely to have
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Naive Bayes and LM generative models

We want to classify document d .
We want to classify a query q.

Classes: e.g., geographical regions like China, UK, Kenya.
Each document in the collection is a different class.

Assume that d was generated by the generative model.
Assume that q was generated by a generative model

Key question: Which of the classes is most likely to have
generated the document? Which document (=class) is most
likely to have generated the query q?

Or: for which class do we have the most evidence? For which
document (as the source of the query) do we have the most
evidence?

Schütze: Language models for IR 42 / 50



Recap Feature selection Language models Language Models for IR Discussion

Naive Bayes Multinomial model / IR language models

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO
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Naive Bayes Bernoulli model / Binary independence model

UAlaska=0 UBeijing=1 U India=0 U join=1 UTaipei=1 UWTO=1

C=China
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Comparison of the two models

multinomial model / IR language model Bernoulli model / BIM
event model generation of (multi)set of tokens generation of subset of vocabula
random variable(s) X = t iff t occurs at given pos Ut = 1 iff t occurs in doc
doc. representation d = 〈t1, . . . , tk , . . . , tnd 〉, tk ∈ V d = 〈e1, . . . , ei , . . . , eM〉,

ei ∈ {0, 1}

parameter estimation P̂(X = t|c) P̂(Ui = e|c)

dec. rule: maximize P̂(c)
∏

1≤k≤nd
P̂(X = tk |c) P̂(c)

∏
ti∈V P̂(Ui = ei |c)

multiple occurrences taken into account ignored
length of docs can handle longer docs works best for short docs
# features can handle more works best with fewer

estimate for the P̂(X = the|c) ≈ 0.05 P̂(Uthe = 1|c) ≈ 1.0
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Vector space (tf-idf) vs. LM

precision significant
Rec. tf-idf LM %chg

0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.4 0.2093 0.2572 +22.9 *
0.6 0.1024 0.1405 +37.1 *
0.8 0.0160 0.0432 +169.6 *
1.0 0.0028 0.0050 +76.9
11-point average 0.1868 0.2233 +19.6 *
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Vector space (tf-idf) vs. LM

precision significant
Rec. tf-idf LM %chg

0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.4 0.2093 0.2572 +22.9 *
0.6 0.1024 0.1405 +37.1 *
0.8 0.0160 0.0432 +169.6 *
1.0 0.0028 0.0050 +76.9
11-point average 0.1868 0.2233 +19.6 *

The language modeling approach always does better in these
experiments . . .
. . . but note that where the approach shows significant gains is at
higher levels of recall.
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Vector space vs BM25 vs LM

BM25/LM: based on probability theory

Vector space: based on similarity, a geometric/linear algebra
notion
Term frequency is directly used in all three models.

LMs: raw term frequency, BM25/Vector space: more complex

Length normalization
Vector space: Cosine or pivot normalization
LMs: probabilities are inherently length normalized
BM25: tuning parameters for optimizing length normalization

idf: BM25/vector space use it directly.
LMs: Mixing term and collection frequencies has an effect
similar to idf.

Terms rare in the general collection, but common in some
documents will have a greater influence on the ranking.

Collection frequency (LMs) vs. document frequency (BM25,
vector space)
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Language models for IR: Assumptions

Simplifying assumption: Queries and documents are objects of
the same type. Not true!

There are other LMs for IR that do not make this assumption.
The vector space model makes the same assumption.

Simplifying assumption: Terms are conditionally independent.

Again, vector space model (and Naive Bayes) make the same
assumption.

Cleaner statement of assumptions than vector space

Thus, better theoretical foundation than vector space

. . . but “pure” LMs perform much worse than “tuned” LMs.
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Take-away today

Feature selection for text classification: How to select a subset
of available dimensions

Statistical language models: Introduction

Statistical language models in IR

Discussion: Properties of different probabilistic models in use
in IR
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Resources

Chapter 13 of IIR (feature selection)

Chapter 12 of IIR (language models)

Resources at http://cislmu.org

Ponte and Croft’s 1998 SIGIR paper (one of the first on LMs
in IR)
Zhai and Lafferty: A study of smoothing methods for language
models applied to information retrieval. ACM Trans. Inf. Syst.
(2004).
Lemur toolkit (good support for LMs in IR)

Schütze: Language models for IR 50 / 50

http://cislmu.org

	Recap
	Feature selection
	Language models
	Language Models for IR
	Discussion

