Introduction to Information Retrieval http://informationretrieval.org

IIR 13: Text Classification & Naive Bayes

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-05-15

Overview

- Recap
- 2 Text classification
- Naive Bayes
- 4 NB theory
- **5** Evaluation of TC

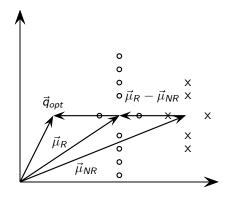
Outline

- Recap
- 2 Text classification
- Naive Bayes
- 4 NB theory
- 5 Evaluation of TC

Relevance feedback: Basic idea

- The user issues a (short, simple) query.
- The search engine returns a set of documents.
- User marks some docs as relevant, some as nonrelevant.
- Search engine computes a new representation of the information need – should be better than the initial query.
- Search engine runs new query and returns new results.
- New results have (hopefully) better recall.

Rocchio illustrated



Types of query expansion

- Manual thesaurus (maintained by editors, e.g., PubMed)
- Automatically derived thesaurus (e.g., based on co-occurrence statistics)
- Query-equivalence based on query log mining (common on the web as in the "palm" example)

Query expansion at search engines

- Main source of query expansion at search engines: query logs
- Example 1: After issuing the query [herbs], users frequently search for [herbal remedies].
 - ullet + "herbal remedies" is potential expansion of "herb".
- Example 2: Users searching for [flower pix] frequently click on the URL photobucket.com/flower. Users searching for [flower clipart] frequently click on the same URL.
 - $\,\bullet\,\,$ "flower clipart" and "flower pix" are potential expansions of each other.

Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- Evaluation of text classification: how do we know it worked / didn't work?

Outline

- Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- Evaluation of TC

A text classification task: Email spam filtering

How would you write a program that would automatically detect and delete this type of message?

Formal definition of TC: Training

Given:

- A document space X
 - Documents are represented in this space typically some type of high-dimensional space.
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. nonspam).
- A training set $\mathbb D$ of labeled documents. Each labeled document $\langle d,c\rangle\in\mathbb X\times\mathbb C$

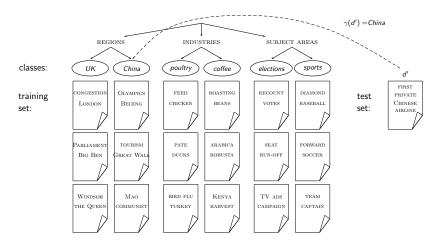
Using a learning method or learning algorithm, we then wish to learn a classifier γ that maps documents to classes:

$$\gamma: \mathbb{X} \to \mathbb{C}$$

Formal definition of TC: Application/Testing

Given: a description $d\in\mathbb{X}$ of a document Determine: $\gamma(d)\in\mathbb{C}$, that is, the class that is most appropriate for d

Topic classification



Exercise

 Find examples of uses of text classification in information retrieval

Examples of how search engines use classification

- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)
- Topic-specific or vertical search restrict search to a "vertical" like "related to health" (relevant to vertical vs. not)

Classification methods: 1. Manual

- Manual classification was used by Yahoo in the beginning of the web. Also: ODP, PubMed
- Very accurate if job is done by experts
- Consistent when the problem size and team is small
- Scaling manual classification is difficult and expensive.
- ullet o We need automatic methods for classification.

Classification methods: 2. Rule-based

- E.g., Google Alerts is rule-based classification.
- There are IDE-type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is cumbersome and expensive.

A Verity topic (a complex classification rule)

```
comment line
                  # Beginning of art topic definition
top-lenel topic
                  art ACCRUE
                       /author = "fsmith"
topic de finition modifiers
                       /date
                                 = "30-Dec-01"
                       /annotation = "Topic created
                                                             sub to pic
                                                                               * 0.70 film ACCRUE
                                         by fsmith"
                                                                               ** 0.50 STEM
                  * 0.70 performing-arts ACCRUE
subtopictopic
                                                                                   /wordtext = film
  eviden cetopi c
                  ** 0.50 WORD
                                                                               ** 0.50 motion-picture PHRAS
                                                             subtopic
                       /wordtext = ballet
  topic definition modifier
                                                                               *** 1.00 WORD
                  ** 0.50 STEM
  eviden cetopi c
                                                                                    /wordtext = motion
  topic definition modifier
                       /wordtext = dance
                                                                               *** 1 00 WORD
                  ** 0.50 WORD
  eviden cetopi c
                                                                                   /wordtext = picture
  topic definition modifier
                       /wordtext = opera
                                                                               ** 0.50 STEM
  eviden cetopi c
                  ** 0.30 WORD
                                                                                    /wordtext = movie
  topic definition modifier
                       /wordtext = symphony
                                                             subtopic
                                                                               * 0.50 video ACCRUE
subtopic
                  * 0.70 visual-arts ACCRUE
                                                                               ** 0.50 STEM
                  ** 0.50 WORD
                                                                                   /wordtext = video
                       /wordtext = painting
                                                                               ** 0.50 STEM
                  ** 0.50 WORD
                                                                                   /wordtext = vcr
                       /wordtext = sculpture
                                                                               # End of art topic
```

Classification methods: 3. Statistical/Probabilistic

- This was our definition of the classification problem text classification as a learning problem
- (i) Supervised learning of a the classification function γ and (ii) application of γ to classifying new documents
- We will look at two methods for doing this: Naive Bayes and SVMs
- No free lunch: requires hand-classified training data
- But this manual classification can be done by non-experts.

Outline

- Recap
- 2 Text classification
- Naive Bayes
- 4 NB theory
- Evaluation of TC

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- \bullet n_d is the length of the document. (number of tokens)
- $P(t_k|c)$ is the conditional probability of term t_k occurring in a document of class c
- $P(t_k|c)$ as a measure of how much evidence t_k contributes that c is the correct class.
- P(c) is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another, we choose the c with highest P(c).

Maximum a posteriori class

- Our goal in Naive Bayes classification is to find the "best" class.
- The best class is the most likely or maximum a posteriori (MAP) class c_{map}:

$$c_{\mathsf{map}} = \argmax_{c \in \mathbb{C}} \hat{P}(c|d) = \argmax_{c \in \mathbb{C}} \ \hat{P}(c) \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c)$$

Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- Since log(xy) = log(x) + log(y), we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k|c)
ight]$$

Naive Bayes classifier

Classification rule:

$$c_{\mathsf{map}} = rg\max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c)
ight]$$

- Simple interpretation:
 - Each conditional parameter $\log \hat{P}(t_k|c)$ is a weight that indicates how good an indicator t_k is for c.
 - The prior $\log \hat{P}(c)$ is a weight that indicates the relative frequency of c.
 - The sum of log prior and term weights is then a measure of how much evidence there is for the document being in the class.
 - We select the class with the most evidence.

Parameter estimation take 1: Maximum likelihood

- Estimate parameters $\hat{P}(c)$ and $\hat{P}(t_k|c)$ from train data: How?
- Prior:

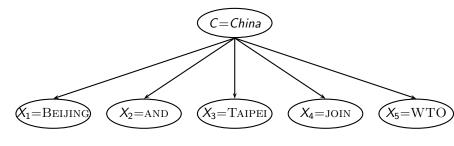
$$\hat{P}(c) = \frac{N_c}{N}$$

- N_c : number of docs in class c; N: total number of docs
- Conditional probabilities:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

- T_{ct} is the number of tokens of t in training documents from class c (includes multiple occurrences)
- We've made a Naive Bayes independence assumption here: $\hat{P}(t_k|c) = \hat{P}(t_k|c)$, independent of position

The problem with maximum likelihood estimates: Zeros



$$P(China|d) \propto P(China) \cdot P(Beijing|China) \cdot P(AND|China) \cdot P(Taipei|China) \cdot P(Join|China) \cdot P(WTO|China)$$

• If WTO never occurs in class China in the train set:

$$\hat{P}(\text{WTO}|\textit{China}) = \frac{T_{\textit{China}}, \text{WTO}}{\sum_{t' \in V} T_{\textit{China},t'}} = \frac{0}{\sum_{t' \in V} T_{\textit{China},t'}} = 0$$

The problem with maximum likelihood estimates: Zeros (cont)

 If there are no occurrences of WTO in documents in class China, we get a zero estimate:

$$\hat{P}(WTO|China) = \frac{T_{China},WTO}{\sum_{t' \in V} T_{China}} = 0$$

• \rightarrow We will get P(China|d) = 0 for any document that contains WTO!

To avoid zeros: Add-one smoothing

Before:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

Now: Add one to each count to avoid zeros:

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

• B is the number of bins – in this case the number of different words or the size of the vocabulary |V|=M

Naive Bayes: Summary

- Estimate parameters from the training corpus using add-one smoothing
- For a new document, for each class, compute sum of (i) log of prior and (ii) logs of conditional probabilities of the terms
- Assign the document to the class with the largest score

Naive Bayes: Training

```
TRAINMULTINOMIALNB(\mathbb{C}, \mathbb{D})
     V \leftarrow \text{ExtractVocabulary}(\mathbb{D})
  2 N \leftarrow \text{CountDocs}(\mathbb{D})
  3 for each c \in \mathbb{C}
      do N_c \leftarrow \text{CountDocsInClass}(\mathbb{D}, c)
  5
           prior[c] \leftarrow N_c/N
            text_c \leftarrow ConcatenateTextOfAllDocsInClass(\mathbb{D}, c)
  6
           for each t \in V
  8
           do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
  9
           for each t \in V
           do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
 10
 11
       return V, prior, condprob
```

Naive Bayes: Testing

```
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, condprob, d)

1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)

2 for each c \in \mathbb{C}

3 do score[c] \leftarrow \log prior[c]

4 for each t \in W

5 do score[c] + = \log condprob[t][c]

6 return arg \max_{c \in \mathbb{C}} score[c]
```

Exercise: Estimate parameters, classify test set

	docID	words in document	in $c = China$?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

(B is the number of bins – in this case the number of different words or the size of the vocabulary |V| = M)

$$c_{\mathsf{map}} = \operatorname*{arg\,max}_{c \in \mathbb{C}} \left[\hat{P}(c) \cdot \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c) \right]$$

Example: Parameter estimates

Priors: $\hat{P}(c) = 3/4$ and $\hat{P}(\overline{c}) = 1/4$ Conditional probabilities:

$$\hat{P}(\text{Chinese}|c) = (5+1)/(8+6) = 6/14 = 3/7$$
 $\hat{P}(\text{Tokyo}|c) = \hat{P}(\text{Japan}|c) = (0+1)/(8+6) = 1/14$
 $\hat{P}(\text{Chinese}|\overline{c}) = (1+1)/(3+6) = 2/9$
 $\hat{P}(\text{Tokyo}|\overline{c}) = \hat{P}(\text{Japan}|\overline{c}) = (1+1)/(3+6) = 2/9$

The denominators are (8+6) and (3+6) because the lengths of $text_c$ and $text_{\overline{c}}$ are 8 and 3, respectively, and because the constant B is 6 as the vocabulary consists of six terms.

Example: Classification

$$\hat{P}(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003$$

 $\hat{P}(\overline{c}|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001$

Thus, the classifier assigns the test document to c=China. The reason for this classification decision is that the three occurrences of the positive indicator Chinese in d_5 outweigh the occurrences of the two negative indicators Japan and Tokyo.

Time complexity of Naive Bayes

	time complexity
training	$ \Theta(\mathbb{D} L_{ave} + \mathbb{C} V) \Theta(L_{a} + \mathbb{C} M_{a}) = \Theta(\mathbb{C} M_{a}) $
testing	$\Theta(L_{a} + \mathbb{C} M_{a}) = \Theta(\mathbb{C} M_{a})$

- L_{ave} : average length of a training doc, L_{a} : length of the test doc, M_{a} : number of distinct terms in the test doc, \mathbb{D} : training set, V: vocabulary, \mathbb{C} : set of classes
- $\Theta(|\mathbb{D}|L_{\mathsf{ave}})$ is the time it takes to compute all counts.
- $\Theta(|\mathbb{C}||V|)$ is the time it takes to compute the parameters from the counts.
- ullet Generally: $|\mathbb{C}||V|<|\mathbb{D}|L_{\mathsf{ave}}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set (training) and the test document (testing). This is optimal.

Outline

- Recap
- 2 Text classification
- 3 Naive Bayes
- 4 NB theory
- 5 Evaluation of TC

Naive Bayes: Analysis

- Now we want to gain a better understanding of the properties of Naive Bayes.
- We will formally derive the classification rule . . .
- ...and make our assumptions explicit.

Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} P(c|d)$$

Apply Bayes rule $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} \frac{P(d|c)P(c)}{P(d)}$$

Drop denominator since P(d) is the same for all classes:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg \, max}} P(d|c)P(c)$$

Too many parameters / sparseness

$$\begin{array}{ll} c_{\mathsf{map}} & = \underset{c \in \mathbb{C}}{\mathsf{arg}} \max_{c \in \mathbb{C}} \ P(d|c)P(c) \\ & = \underset{c \in \mathbb{C}}{\mathsf{arg}} \max_{c \in \mathbb{C}} P(\langle t_1, \dots, t_k, \dots, t_{n_d} \rangle | c)P(c) \end{array}$$

- There are too many parameters $P(\langle t_1, \dots, t_k, \dots, t_{n_d} \rangle | c)$, one for each unique combination of a class and a sequence of words.
- We would need a very, very large number of training examples to estimate that many parameters.
- This is the problem of data sparseness.

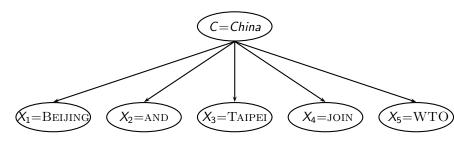
Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we make the Naive Bayes conditional independence assumption:

$$P(d|c) = P(\langle t_1, \ldots, t_{n_d} \rangle | c) = \prod_{1 \leq k \leq n_d} P(X_k = t_k | c)$$

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(X_k = t_k | c)$. Recall from earlier the estimates for these conditional probabilities: $\hat{P}(t|c) = \frac{T_{ct}+1}{(\sum_{t' \in V} T_{ct'})+B}$

Generative model



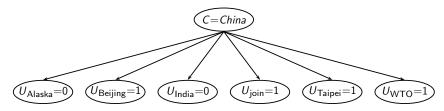
$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- Generate a class with probability P(c)
- Generate each of the words (in their respective positions), conditional on the class, but independent of each other, with probability $P(t_k|c)$
- To classify docs, we "reengineer" this process and find the class that is most likely to have generated the doc.

Second independence assumption

- $\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$
- For example, for a document in the class *UK*, the probability of generating QUEEN in the first position of the document is the same as generating it in the last position.
- The two independence assumptions amount to the bag of words model.

A different Naive Bayes model: Bernoulli model



Violation of Naive Bayes independence assumptions

Conditional independence:

$$P(\langle t_1,\ldots,t_{n_d}\rangle|c)=\prod_{1\leq k\leq n_d}P(X_k=t_k|c)$$

- Positional independence:
- $\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$
- The independence assumptions do not really hold of documents written in natural language.
- Exercise
 - Examples for why conditional independence assumption is not really true?
 - Examples for why positional independence assumption is not really true?
- How can Naive Bayes work if it makes such inappropriate assumptions?

Why does Naive Bayes work?

- Naive Bayes can work well even though conditional independence assumptions are badly violated.
- Example:

	c_1	<i>c</i> ₂	class selected
true probability $P(c d)$	0.6	0.4	c_1
$\hat{P}(c)\prod_{1\leq k\leq n_d}\hat{P}(t_k c)$ NB estimate $\hat{P}(c d)$	0.00099	0.00001	
NB estimate $\hat{P}(c d)$	0.99	0.01	c_1

- Double counting of evidence causes underestimation (0.01) and overestimation (0.99).
- Classification is about predicting the correct class and not about accurately estimating probabilities.
- Naive Bayes is terrible for correct estimation . . .
- ... but if often performs well at accurate prediction (choosing the correct class).

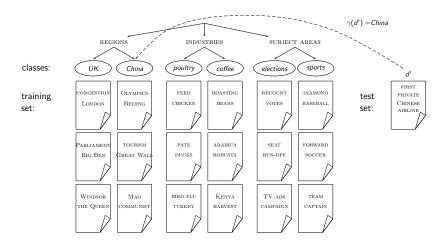
Naive Bayes is not so naive

- Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)
- More robust to nonrelevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast
- Low storage requirements

Outline

- Recap
- 2 Text classification
- Naive Bayes
- 4 NB theory
- **5** Evaluation of TC

Evaluation on Reuters



Example: The Reuters collection

symbol	statistic	value
N	documents	800,000
L	avg. $\#$ word tokens per document	200
Μ	word types	400,000

type of class	number	examples		
region	366	UK, China		
industry	870	poultry, coffee		
subject area	126	elections, sports		

A Reuters document

Evaluating classification

- Evaluation must be done on test data that are independent of the training data, i.e., training and test sets are disjoint.
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: Precision, recall, F_1 , classification accuracy

Precision P and recall R

	in the class	not in the class
predicted to be in the class	true positives (TP)	false positives (FP)
predicted to not be in the class	false negatives (FN)	true negatives (TN)

TP, FP, FN, TN are counts of documents. The sum of these four

counts is the total number of documents.

precision:
$$P = TP/(TP + FP)$$

recall: $R = TP/(TP + FN)$

A combined measure: F

• F_1 allows us to trade off precision against recall.

•

$$F_1 = \frac{1}{\frac{1}{2}\frac{1}{P} + \frac{1}{2}\frac{1}{R}} = \frac{2PR}{P+R}$$

• This is the harmonic mean of P and R: $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$

Averaging: Micro vs. Macro

- We now have an evaluation measure (F_1) for one class.
- But we also want a single number that measures the aggregate performance over all classes in the collection.
- Macroaveraging
 - Compute F_1 for each of the C classes
 - Average these C numbers
- Microaveraging
 - Compute TP, FP, FN for each of the C classes
 - Sum these C numbers (e.g., all TP to get aggregate TP)
 - Compute F_1 for aggregate TP, FP, FN

F_1 scores for Naive Bayes vs. other methods

(a)		NB	Rocchio	kNN	SVM
	micro-avg-L (90 classes)	80	85	86	89
	macro-avg (90 classes)	47	59	60	60

NB	Rocchio	kNN	trees	SVM
96	93	97	98	98
88	65	92	90	94
57	47	78	66	75
79	68	82	85	95
80	70	86	85	89
64	65	77	73	76
65	63	74	67	78
85	49	79	74	86
70	69	77	93	92
65	48	78	92	90
82	65	82	88	92
s) 75	62	n/a	n/a	87
	96 88 57 79 80 64 65 85 70 65 82 75	96 93 88 65 57 47 79 68 80 70 64 65 65 63 85 49 70 69 65 48 82 65 s) 75 62	96 93 97 88 65 92 57 47 78 79 68 82 80 70 86 64 65 77 65 63 74 85 49 79 70 69 77 65 48 78 82 65 82 s) 75 62 n/a	96 93 97 98 88 65 92 90 57 47 78 66 79 68 82 85 80 70 86 85 64 65 77 73 65 63 74 67 85 49 79 74 70 69 77 93 65 48 78 92 82 65 82 88 s) 75 62 n/a n/a

Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).

Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- Evaluation of text classification: how do we know it worked / didn't work?

Resources

- Chapter 13 of IIR
- Resources at http://cislmu.org
 - Weka: A data mining software package that includes an implementation of Naive Bayes
 - Reuters-21578 text classification evaluation set
 - Vulgarity classifier fail