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Feature selection: MI for poultry/export

Goal of feature selection: eleminate noise and useless features for
better effectiveness and efficiency

ec = epoultry = 1 ec = epoultry = 0
et = eexport = 1 N11 = 49 N10 = 27,652
et = eexport = 0 N01 = 141 N00 = 774,106

Plug

these values into formula:

I (U;C ) =
49

801,948
log2

801,948 · 49

(49+27,652)(49+141)

+
141

801,948
log2

801,948 · 141

(141+774,106)(49+141)

+
27,652

801,948
log2

801,948 · 27,652

(49+27,652)(27,652+774,106)

+
774,106

801,948
log2

801,948 · 774,106

(141+774,106)(27,652+774,106)

≈ 0.000105
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Feature selection for Reuters classes coffee and sports

Class: coffee

term MI

coffee 0.0111
bags 0.0042
growers 0.0025
kg 0.0019
colombia 0.0018
brazil 0.0016
export 0.0014
exporters 0.0013
exports 0.0013
crop 0.0012

Class: sports

term MI

soccer 0.0681
cup 0.0515
match 0.0441
matches 0.0408
played 0.0388
league 0.0386
beat 0.0301
game 0.0299
games 0.0284
team 0.0264
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Using language models (LMs) for IR

LM = language model

We view the document as a generative model that generates
the query.

What we need to do:

Define the precise generative model we want to use

Estimate parameters (different parameters for each
document’s model)

Smooth to avoid zeros

Apply to query and find document most likely to have
generated the query

Present most likely document(s) to user
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Jelinek-Mercer smoothing

P(t|d) = λP(t|Md) + (1− λ)P(t|Mc)

Mixes the probability from the document with the general
collection frequency of the word.

High value of λ: “conjunctive-like” search – tends to retrieve
documents containing all query words.

Low value of λ: more disjunctive, suitable for long queries

Correctly setting λ is very important for good performance.
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Take-away today

Vector space classification: Basic idea of doing text
classification for documents that are represented as vectors

Rocchio classifier: Rocchio relevance feedback idea applied to
text classification

k nearest neighbor classification

Linear classifiers

More than two classes

8 / 68



Outline

1 Recap

2 Intro vector space classification

3 Rocchio

4 kNN

5 Linear classifiers

6 > two classes

9 / 68



Recall vector space representation

Each document is a vector, one component for each term.

Terms are axes.

High dimensionality: 100,000s of dimensions

Normalize vectors (documents) to unit length

How can we do classification in this space?
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Basic text classification setup

classes:

training

set:

test

set:

regions industries subject areas

γ(d ′) =China

first

private

Chinese

airline

UK China poultry coffee elections sports

London

congestion

Big Ben

Parliament

the Queen

Windsor

Beijing

Olympics

Great Wall

tourism

communist

Mao

chicken

feed

ducks

pate

turkey

bird flu

beans

roasting

robusta

arabica

harvest

Kenya

votes

recount

run-off

seat

campaign

TV ads

baseball

diamond

soccer

forward

captain

team

d ′
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Vector space classification

As before, the training set is a set of documents, each labeled
with its class.

In vector space classification, this set corresponds to a labeled
set of points or vectors in the vector space.

Premise 1: Documents in the same class form a contiguous
region.

Premise 2: Documents from different classes don’t overlap.

We define lines, surfaces, hypersurfaces to divide regions.
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Classes in the vector space

xx
x

x

⋄
⋄

⋄⋄

⋄

⋄

China

Kenya

UK
⋆

Should the document ⋆ be assigned to China, UK or Kenya? Find
separators between the classes Based on these separators: ⋆ should
be assigned to China How do we find separators that do a good
job at classifying new documents like ⋆? – Main topic of today
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Aside: 2D/3D graphs can be misleading

d tru
e

dprojected

x1

x2 x3 x4

x5

x ′1 x ′2 x ′3 x ′4 x ′5

x ′1 x ′2 x ′3
x ′4 x ′5

Left: A projection of the 2D semicircle to 1D. For the points
x1, x2, x3, x4, x5 at x coordinates −0.9,−0.2, 0, 0.2, 0.9 the distance
|x2x3| ≈ 0.201 only differs by 0.5% from |x ′2x

′
3| = 0.2; but

|x1x3|/|x
′
1x

′
3| = d true/dprojected ≈ 1.06/0.9 ≈ 1.18 is an example of

a large distortion (18%) when projecting a large area. Right: The
corresponding projection of the 3D hemisphere to 2D.
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Relevance feedback

In relevance feedback, the user marks documents as
relevant/nonrelevant.

Relevant/nonrelevant can be viewed as classes or categories.

For each document, the user decides which of these two
classes is correct.

The IR system then uses these class assignments to build a
better query (“model”) of the information need . . .

. . . and returns better documents.

Relevance feedback is a form of text classification.
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Using Rocchio for vector space classification

The principal difference between relevance feedback and text
classification:

The training set is given as part of the input in text
classification.
It is interactively created in relevance feedback.

17 / 68



Rocchio classification: Basic idea

Compute a centroid for each class

The centroid is the average of all documents in the class.

Assign each test document to the class of its closest centroid.
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Recall definition of centroid

~µ(c) =
1

|Dc |

∑

d∈Dc

~v(d)

where Dc is the set of all documents that belong to class c and

~v(d) is the vector space representation of d .
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Rocchio illustrated : a1 = a2, b1 = b2, c1 = c2

xx
x

x

⋄

⋄
⋄

⋄

⋄

⋄

China

Kenya

UK
⋆ a1

a2

b1

b2

c1

c2
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Rocchio algorithm

TrainRocchio(C,D)
1 for each cj ∈ C

2 do Dj ← {d : 〈d , cj 〉 ∈ D}
3 ~µj ←

1
|Dj |

∑
d∈Dj

~v(d)

4 return {~µ1, . . . , ~µJ}

ApplyRocchio({~µ1, . . . , ~µJ}, d)
1 return argminj |~µj − ~v(d)|
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Rocchio properties

Rocchio forms a simple representation for each class: the
centroid

We can interpret the centroid as the prototype of the class.

Classification is based on similarity to / distance from
centroid/prototype.

Does not guarantee that classifications are consistent with the
training data!
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Time complexity of Rocchio

mode time complexity

training Θ(|D|Lave + |C||V |) ≈ Θ(|D|Lave)
testing Θ(La + |C|Ma) ≈ Θ(|C|Ma)
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Rocchio vs. Naive Bayes

In many cases, Rocchio performs worse than Naive Bayes.

One reason: Rocchio does not handle nonconvex, multimodal
classes correctly.
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Rocchio cannot handle nonconvex, multimodal classes
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a

a

a
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a
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a
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a
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a
a
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a

a

a
a

a

a

a

a

a
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a
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a
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b
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b

X XA
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o

Exercise: Why is Rocchio
not expected to do well for
the classification task a vs.
b here?

A is centroid of the
a’s, B is centroid of
the b’s.

The point o is closer
to A than to B.

But o is a better fit for
the b class.

A is a multimodal class
with two prototypes.

But in Rocchio we only
have one prototype.
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kNN classification

kNN classification is another vector space classification
method.

It also is very simple and easy to implement.

kNN is more accurate (in most cases) than Naive Bayes and
Rocchio.

If you need to get a pretty accurate classifier up and running
in a short time . . .

. . . and you don’t care about efficiency that much . . .

. . . use kNN.
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kNN classification

kNN = k nearest neighbors

kNN classification rule for k = 1 (1NN): Assign each test
document to the class of its nearest neighbor in the training
set.

1NN is not very robust – one document can be mislabeled or
atypical.

kNN classification rule for k > 1 (kNN): Assign each test
document to the majority class of its k nearest neighbors in
the training set.

Rationale of kNN: contiguity hypothesis

We expect a test document d to have the same label as the
training documents located in the local region surrounding d .
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Probabilistic kNN

Probabilistic version of kNN: P(c |d) = fraction of k neighbors
of d that are in c

kNN classification rule for probabilistic kNN: Assign d to class
c with highest P(c |d)
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kNN is based on Voronoi tessellation
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kNN algorithm

Train-kNN(C,D)
1 D

′ ← Preprocess(D)
2 k ← Select-k(C,D′)
3 return D

′, k

Apply-kNN(D′, k , d)
1 Sk ← ComputeNearestNeighbors(D′, k , d)
2 for each cj ∈ C(D′)
3 do pj ← |Sk ∩ cj |/k
4 return argmaxj pj
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Exercise

⋆

x

x

x

x

x

x

x

x

x

x

o
o

o

o

o

How is star classified by:

(i) 1-NN (ii) 3-NN (iii) 9-NN (iv) 15-NN (v) Rocchio?

32 / 68



Time complexity of kNN

kNN with preprocessing of training set

training Θ(|D|Lave)
testing Θ(La + |D|MaveMa) = Θ(|D|MaveMa)

kNN test time proportional to the size of the training set!

The larger the training set, the longer it takes to classify a
test document.

kNN is inefficient for very large training sets.

Question: Can we divide up the training set into regions, so
that we only have to search in one region to do kNN
classification for a given test document? (which perhaps
would give us better than linear time complexity)
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Curse of dimensionality

Our intuitions about space are based on the 3D world we live
in.

Intuition 1: some things are close by, some things are distant.

Intuition 2: we can carve up space into areas such that: within
an area things are close, distances between areas are large.

These two intuitions don’t necessarily hold for high
dimensions.

In particular: for a set of k uniformly distributed points, let
dmin be the smallest distance between any two points and
dmax be the largest distance between any two points.

Then

lim
d→∞

dmax− dmin

dmin
= 0
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Curse of dimensionality: Simulation

Simulate

lim
d→∞

dmax− dmin

dmin
= 0

Pick a dimensionality d

Generate 10 random points in the d -dimensional hypercube
(uniform distribution)

Compute all 45 distances

Compute dmax−dmin
dmin

We see that intuition 1 (some things are close, others are
distant) is not true for high dimensions.
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Intuition 2: Space can be carved up

Intuition 2: we can carve up space into areas such that: within
an area things are close, distances between areas are large.

If this is true, then we have a simple and efficient algorithm
for kNN.

To find the k closest neighbors of data point
< x1, x2, . . . , xd > do the following.

Using binary search find all data points whose first dimension
is in [x1 − ǫ, x1 + ǫ]. This is O(log n) where n is the number of
data points.

Do this for each dimension, then intersect the d subsets.
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Intuition 2: Space can be carved up

Size of data set n = 100

Again, assume uniform distribution in hypercube

Set ǫ = 0.05: we will look in an interval of length 0.1 for
neighbors on each dimension.

What is the probability that the nearest neighbor of a new
data point ~x is in this neighborhood in d = 1 dimension?

for d = 1: 1− (1− 0.1)100 ≈ 0.99997

In d = 2 dimensions?

for d = 2: 1− (1− 0.12)100 ≈ 0.63

In d = 3 dimensions?

for d = 3: 1− (1− 0.13)100 ≈ 0.095

In d = 4 dimensions?

for d = 4: 1− (1− 0.14)100 ≈ 0.0095

In d = 5 dimensions?

for d = 5: 1− (1− 0.15)100 ≈ 0.0009995
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Intuition 2: Space can be carved up

In d = 5 dimensions?

for d = 5: 1− (1− 0.15)100 ≈ 0.0009995

In other words: with enough dimensions, there is only one
“local” region that will contain the nearest neighbor with high
certainty: the entire search space.

We cannot carve up high-dimensional space into neat
neighborhoods . . .

. . . unless the “true” dimensionality is much lower than d .
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kNN: Discussion

No training necessary

But linear preprocessing of documents is as expensive as
training Naive Bayes.
We always preprocess the training set, so in reality training
time of kNN is linear.

kNN is very accurate if training set is large.

Optimality result: asymptotically zero error if Bayes rate is
zero.

But kNN can be very inaccurate if training set is small.
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Linear classifiers

Definition:

A linear classifier computes a linear combination or weighted
sum

∑
i wixi of the feature values.

Classification decision:
∑

i wixi > θ?
. . . where θ (the threshold) is a parameter.

(First, we only consider binary classifiers.)

Geometrically, this corresponds to a line (2D), a plane (3D) or
a hyperplane (higher dimensionalities), the separator.

We find this separator based on training set.

Methods for finding separator: Perceptron, Rocchio, Naive
Bayes – as we will explain on the next slides

Assumption: The classes are linearly separable.
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A linear classifier in 1D

A linear classifier in 1D is
a point described by the
equation w1d1 = θ

The point at θ/w1

Points (d1) with w1d1 ≥ θ
are in the class c .

Points (d1) with w1d1 < θ
are in the complement
class c .
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A linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 +w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in
the class c .

Points (d1 d2) with
w1d1 + w2d2 < θ are in
the complement class c .
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A linear classifier in 3D

A linear classifier in 3D is
a plane described by the
equation
w1d1 + w2d2 + w3d3 = θ

Example for a 3D linear
classifier

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 ≥ θ
are in the class c .

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 < θ
are in the complement
class c .
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Rocchio as a linear classifier

Rocchio is a linear classifier defined by:

M∑

i=1

widi = ~w~d = θ

where ~w is the normal vector ~µ(c1)− ~µ(c2) and
θ = 0.5 ∗ (|~µ(c1)|

2 − |~µ(c2)|
2).
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Naive Bayes as a linear classifier

Multinomial Naive Bayes is a linear classifier (in log space) defined
by:

M∑

i=1

widi = θ

where wi = log[P̂(ti |c)/P̂(ti |c̄)], di = number of occurrences of ti
in d , and θ = − log[P̂(c)/P̂(c̄)]. Here, the index i , 1 ≤ i ≤ M,
refers to terms of the vocabulary (not to positions in d as k did in
our original definition of Naive Bayes)
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kNN is not a linear classifier
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⋄

⋄

⋄
⋄⋄

⋄ ⋄

⋆

Classification decision
based on majority of
k nearest neighbors.

The decision
boundaries between
classes are piecewise
linear . . .

. . . but they are in
general not linear
classifiers that can be
described as∑M

i=1 widi = θ.
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Example of a linear two-class classifier

ti wi d1i d2i ti wi d1i d2i
prime 0.70 0 1 dlrs -0.71 1 1
rate 0.67 1 0 world -0.35 1 0
interest 0.63 0 0 sees -0.33 0 0
rates 0.60 0 0 year -0.25 0 0
discount 0.46 1 0 group -0.24 0 0
bundesbank 0.43 0 0 dlr -0.24 0 0

This is for the class interest in Reuters-21578.
For simplicity: assume a simple 0/1 vector representation
d1: “rate discount dlrs world”
d2: “prime dlrs”
θ = 0
Exercise: Which class is d1 assigned to? Which class is d2 assigned to?
We assign document ~d1 “rate discount dlrs world” to interest since
~wT~d1 = 0.67 · 1 + 0.46 · 1 + (−0.71) · 1 + (−0.35) · 1 = 0.07 > 0 = θ.
We assign ~d2 “prime dlrs” to the complement class (not in interest) since
~wT~d2 = −0.01 ≤ θ.
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Which hyperplane?
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Learning algorithms for vector space classification

In terms of actual computation, there are two types of
learning algorithms.

(i) Simple learning algorithms that estimate the parameters of
the classifier directly from the training data, often in one
linear pass.

Naive Bayes, Rocchio, kNN are all examples of this.

(ii) Iterative algorithms

Support vector machines
Perceptron (example available as PDF on website:
http://cislmu.org)

The best performing learning algorithms usually require
iterative learning.
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Perceptron update rule

Randomly initialize linear separator ~w

Do until convergence:

Pick data point ~x
If sign(~wT~x) is correct class (1 or -1): do nothing
Otherwise: ~w = ~w − sign(~wT~x)~x
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Perceptron (class of ~x is YES)

~w

~x

S

NO
YES
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Perceptron (class of ~x is YES)

~w

~x

~x

S

NO
YES
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Perceptron (class of ~x is YES)

~w

~x

~x

~w + ~x

S S ′

NO
YES

NOYES
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Perceptron (class of ~x is YES)

~x
~w + ~x

S ′

NOYES
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Which hyperplane?
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Which hyperplane?

For linearly separable training sets: there are infinitely many
separating hyperplanes.

They all separate the training set perfectly . . .

. . . but they behave differently on test data.

Error rates on new data are low for some, high for others.

How do we find a low-error separator?

Perceptron: generally bad; Naive Bayes, Rocchio: ok; linear
SVM: good
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Linear classifiers: Discussion

Many common text classifiers are linear classifiers: Naive
Bayes, Rocchio, logistic regression, linear support vector
machines etc.

Each method has a different way of selecting the separating
hyperplane

Huge differences in performance on test documents

Can we get better performance with more powerful nonlinear
classifiers?

Not in general: A given amount of training data may suffice
for estimating a linear boundary, but not for estimating a
more complex nonlinear boundary.

58 / 68



A nonlinear problem
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Linear classifier like Rocchio does badly on this task.

kNN will do well (assuming enough training data)
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Which classifier do I use for a given TC problem?

Is there a learning method that is optimal for all text
classification problems?

No, because there is a tradeoff between bias and variance.

Factors to take into account:

How much training data is available?
How simple/complex is the problem? (linear vs. nonlinear
decision boundary)
How noisy is the problem?
How stable is the problem over time?

For an unstable problem, it’s better to use a simple and robust

classifier.
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How to combine hyperplanes for > 2 classes?

?

62 / 68



One-of problems

One-of or multiclass classification

Classes are mutually exclusive.
Each document belongs to exactly one class.
Example: language of a document (assumption: no document
contains multiple languages)
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One-of classification with linear classifiers

Combine two-class linear classifiers as follows for one-of
classification:

Run each classifier separately
Rank classifiers (e.g., according to score)
Pick the class with the highest score
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Any-of problems

Any-of or multilabel classification

A document can be a member of 0, 1, or many classes.
A decision on one class leaves decisions open on all other
classes.
A type of “independence” (but not statistical independence)
Example: topic classification
Usually: make decisions on the region, on the subject area, on
the industry and so on “independently”
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Any-of classification with linear classifiers

Combine two-class linear classifiers as follows for any-of
classification:

Simply run each two-class classifier separately on the test
document and assign document accordingly
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Resources

Chapter 13 of IIR (feature selection)

Chapter 14 of IIR

Resources at http://cislmu.org

Perceptron example
General overview of text classification: Sebastiani (2002)
Text classification chapter on decision tress and perceptrons:
Manning & Schütze (1999)
One of the best machine learning textbooks: Hastie, Tibshirani
& Friedman (2003)
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