
Introduction to Information Retrieval
http://informationretrieval.org

IIR 15-2: Learning to Rank

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2011-06-05

1 / 53

http://informationretrieval.org


Overview

1 Recap

2 Zone scoring

3 Machine-learned scoring

4 Ranking SVMs

2 / 53



Outline

1 Recap

2 Zone scoring

3 Machine-learned scoring

4 Ranking SVMs

3 / 53



A linear classifier in 3D

A linear classifier in 3D is
a plane described by the
equation
w1d1 + w2d2 + w3d3 = θ

Example for a 3D linear
classifier

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 ≥ θ

are in the class c .

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 < θ

are in the complement
class c .

4 / 53



Linear classifiers

Many common text classifiers are linear classifiers: Naive
Bayes, Rocchio, logistic regression, least squares regression,
linear support vector machines etc.

Each method has a different way of selecting the separating
hyperplane

Huge differences in performance on test documents

5 / 53



Support vector machines

Binary classification
problem

Simple SVMs are
linear classifiers.

criterion: being
maximally far away
from any data point
→ determines
classifier margin

linear separator
position defined by
support vectors

b
b

b

b
b

b

bb

b

ut

ut

ut
ut

ut

ut
ut

b
b

b

b
b

b

bb

b

ut

ut

ut
ut

ut

ut
ut

Support vectors

Margin is
maximized

Maximum
margin
decision
hyperplane

6 / 53



Optimization problem solved by SVMs

Find ~w and b such that:
1
2 ~w

T~w is minimized (because |~w | =
√
~wT~w), and

for all {(~xi , yi )}, yi (~wT~xi + b) ≥ 1

7 / 53



Which machine learning method to choose

Is there a learning method that is optimal for all text
classification problems?

No, because there is a tradeoff between bias and variance.

Factors to take into account:

How much training data is available?
How simple/complex is the problem? (linear vs. nonlinear
decision boundary)
How noisy is the problem?
How stable is the problem over time?

For an unstable problem, it’s better to use a simple and robust

classifier.

8 / 53



Take-away today

Basic idea of learning to rank (LTR): We use machine learning
to learn the relevance score (retrieval status value) of a
document with respect to a query.

Zone scoring: a particularly simple instance of LTR

Machine-learned scoring as a general approach to ranking

Ranking SVMs

9 / 53



Outline

1 Recap

2 Zone scoring

3 Machine-learned scoring

4 Ranking SVMs

10 / 53



Main idea

The aim of term weights (e.g., tf-idf) is to measure term
salience.

The sum of term weights is a measure of the relevance of a
document to a query and the basis for ranking.

Now we view this ranking problem as a machine learning
problem – we will learn the weighting or, more generally, the
ranking.

Term weights can be learned using training examples that have
been judged.

This methodology falls under a general class of approaches
known as machine learned relevance or learning to rank.

11 / 53



Learning weights

Main methodology

Given a set of training examples, each of which is a tuple of:
a query q, a document d , a relevance judgment for d on q

Simplest case: R(d , q) is either relevant (1) or nonrelevant (0)
More sophisticated cases: graded relevance judgments

Learn weights from these examples, so that the learned scores
approximate the relevance judgments in the training examples

12 / 53



Binary independence model (BIM)

Is what BIM does a form of learning to rank?

Recap BIM:

Estimate classifier of probability of relevance on training set
Apply to all documents
Rank documents according to probability of relevance

13 / 53



Learning to rank vs. Text classification

Both are machine learning approaches

Text classification, BIM and relevance feedback (if solved by
text classification) are query-specific.

We need a query-specific training set to learn the ranker.
We need to learn a new ranker for each query.

Learning to rank usually refers to query-independent ranking.

We learn a single classifier.

We can then rank documents for a query that we don’t have
any relevance judgments for.

14 / 53



Learning to rank: Exercise

One approach to learning to rank is to represent each
query-document pair as a data point, represented as a vector.

We have two classes.

Class 1: the document is relevant to the query.
Class 2: the document is not relevant to the query.

This is a standard classification problem, except that the data
points are query-document pairs (as opposed to documents).

Documents are ranked according to probability of relevance of
corresponding query-document pairs.

What features/dimensions would you use to represent a
query-document pair?

15 / 53



Simple form of learning to rank: Zone scoring

Given: a collection where documents have three zones (a.k.a.
fields): author, title, body

Weighted zone scoring requires a separate weight for each
zone, e.g. g1, g2, g3

Not all zones are equally important:
e.g. author < title < body

→ g1 = 0.2, g2 = 0.3, g3 = 0.5 (so that they add up to 1)

Score for a zone = 1 if the query term occurs in that zone, 0
otherwise (Boolean)

Example

Query term appears in title and body only
Document score: (0.3 · 1) + (0.5 · 1) = 0.8.

16 / 53



General form of weighted zone scoring

Given query q and document d , weighted zone scoring assigns to
the pair (q, d) a score in the interval [0,1] by computing a linear
combination of document zone scores, where each zone contributes
a value.

Consider a set of documents, which have l zones

Let g1, ..., gl ∈ [0, 1], such that
∑l

i=1 gi = 1

For 1 ≤ i ≤ l , let si be the Boolean score denoting a match
(or non-match) between q and the i th zone

si = 1 if a query term occurs in zone i , 0 otherwise

Weighted zone score a.k.a ranked Boolean retrieval

Rank documents according to
∑l

i=1 gi si

17 / 53



Learning weights in weighted zone scoring

Weighted zone scoring may be viewed as learning a linear
function of the Boolean match scores contributed by the
various zones.

No free lunch: labor-intensive assembly of user-generated
relevance judgments from which to learn the weights

Especially in a dynamic collection (such as the Web)
Major search engines put considerable resources into creating
large training sets for learning to rank.

Good news: once you have a large enough training set, the
problem of learning the weights gi reduces to a simple
optimization problem.

18 / 53



Learning weights in weighted zone scoring: Simple case

Let documents have two zones: title, body

The weighted zone scoring formula we saw before:

l∑

i=1

gi si

Given q, d , sT (d , q) = 1 if a query term occurs in title, 0
otherwise; sB(d , q) = 1 if a query term occurs in body, 0
otherwise

We compute a score between 0 and 1 for each (d , q) pair
using sT (d , q) and sB(d , q) by using a constant g ∈ [0, 1]:

score(d , q) = g · sT (d , q) + (1− g) · sB(d , q)

19 / 53



Learning weights: determine g from training examples

Example

Φj dj qj sT sB r(dj , qj)
Φ1 37 linux 1 1 Relevant
Φ2 37 penguin 0 1 Nonrelevant
Φ3 238 system 0 1 Relevant
Φ4 238 penguin 0 0 Nonrelevant
Φ5 1741 kernel 1 1 Relevant
Φ6 2094 driver 0 1 Relevant
Φ7 3194 driver 1 0 Nonrelevant

Training examples: triples of the form Φj = (dj , qj , r(dj , qj))

A given training document dj and a given training query qj
are assessed by a human who decides r(dj , qj) (either relevant
or nonrelevant)

20 / 53



Learning weights: determine g from training examples

Example

Example DocID Query sT sB Judgment
Φ1 37 linux 1 1 Relevant
Φ2 37 penguin 0 1 Nonrelevant
Φ3 238 system 0 1 Relevant
Φ4 238 penguin 0 0 Nonrelevant
Φ5 1741 kernel 1 1 Relevant
Φ6 2094 driver 0 1 Relevant
Φ7 3194 driver 1 0 Nonrelevant

For each training example Φj we have Boolean values
sT (dj , qj ) and sB(dj , qj ) that we use to compute a score:

score(dj , qj) = g · sT (dj , qj ) + (1− g) · sB(dj , qj)

21 / 53



Learning weights

We compare this score score(dj , qj) with the human relevance
judgment for the same query-document pair (dj , qj ).

We define the error of the scoring function with weight g as

ǫ(g ,Φj ) = (r(dj , qj)− score(dj , qj))
2

Then, the total error of a set of training examples is given by

∑

j

ǫ(g ,Φj )

The problem of learning the constant g from the given
training examples then reduces to picking the value of g that
minimizes the total error.

22 / 53



Minimizing the total error ǫ: Example (1)

Training examples

Example DocID Query sT sB Judgment
Φ1 37 linux 1 1 1 (relevant)
Φ2 37 penguin 0 1 0 (nonrelevant)
Φ3 238 system 0 1 1 (relevant)
Φ4 238 penguin 0 0 0 (nonrelevant)
Φ5 1741 kernel 1 1 1 (relevant)
Φ6 2094 driver 0 1 1 (relevant)
Φ7 3194 driver 1 0 0 (nonrelevant)

Compute score:
score(dj , qj ) = g · sT (dj , qj) + (1− g) · sB(dj , qj )
Compute total error:

∑
j ǫ(g ,Φj ), where

ǫ(g ,Φj ) = (r(dj , qj)− score(dj , qj))
2

Pick the value of g that minimizes the total error

23 / 53



Minimizing the total error ǫ: Example (2)

Compute score score(dj , qj )
score(d1, q1) = g · 1 + (1− g) · 1 = g + 1− g = 1
score(d2, q2) = g · 0 + (1− g) · 1 = 0 + 1− g = 1− g

score(d3, q3) = g · 0 + (1− g) · 1 = 0 + 1− g = 1− g

score(d4, q4) = g · 0 + (1− g) · 0 = 0 + 0 = 0
score(d5, q5) = g · 1 + (1− g) · 1 = g + 1− g = 1
score(d6, q6) = g · 0 + (1− g) · 1 = 0 + 1− g = 1− g

score(d7, q7) = g · 1 + (1− g) · 0 = g + 0 = g

Compute total error
∑

j ǫ(g ,Φj )

(1−1)2+(0−1+g)2+(1−1+g)2+(0−0)2+(1−1)2+(1−1+
g)2+(0−g)2 = 0+(−1+g)2+g2+0+0+g2+g2 = 1−2g+4g2

Pick the value of g that minimizes the total error
Setting derivative to 0, gives you a minimum of g = 1

4 .

24 / 53



Weight g that minimizes error in the general case

g =
n10r + n01n

n10r + n10n + n01r + n01n

n
...

are the counts of rows of the training set table with the
corresponding properties:
n10r sT = 1 sB = 0 document relevant
n10n sT = 1 sB = 0 document nonrelevant
n01r sT = 0 sB = 1 document relevant
n01n sT = 0 sB = 1 document nonrelevant

Derivation: see book

Note that we ignore documents that have 0 match scores for
both zones or 1 match scores for both zones – the value of g
does not change their final score.

25 / 53



Exercise: Compute g that minimizes the error

DocID Query sT sB Judgment
Φ1 37 linux 0 0 Relevant
Φ2 37 penguin 1 1 Nonrelevant
Φ3 238 system 1 0 Relevant
Φ4 238 penguin 1 1 Nonrelevant
Φ5 238 redmond 0 1 Nonrelevant
Φ6 1741 kernel 0 0 Relevant
Φ7 2094 driver 1 0 Relevant
Φ8 3194 driver 0 1 Nonrelevant
Φ9 3194 redmond 0 0 Nonrelevant

26 / 53



Solution

2 n10r sT = 1 sB = 0 document relevant
0 n10n sT = 1 sB = 0 document nonrelevant
0 n01r sT = 0 sB = 1 document relevant
2 n01n sT = 0 sB = 1 document nonrelevant

g =
n10r + n01n

n10r + n10n + n01r + n01n
=

2 + 2

2 + 0 + 2 + 0
= 1

27 / 53



Outline

1 Recap

2 Zone scoring

3 Machine-learned scoring

4 Ranking SVMs

28 / 53



More general setup of machine learned scoring

So far, we have considered a case where we combined match
scores (Boolean indicators of relevance).

Now consider more general factors that go beyond Boolean
functions of query term presence in document zones.

29 / 53



Two examples of typical features

The vector space cosine similarity between query and
document (denoted α)

The minimum window width within which the query terms lie
(denoted ω)

Query term proximity is often indicative of topical relevance.

Thus, we have one feature that captures overall
query-document similarity and one features that captures
proximity of query terms in the document.

30 / 53



Learning to rank setup for these two features

Example

Example DocID Query α ω Judgment
Φ1 37 linux 0.032 3 relevant
Φ2 37 penguin 0.02 4 nonrelevant
Φ3 238 operating system 0.043 2 relevant
Φ4 238 runtime 0.004 2 nonrelevant
Φ5 1741 kernel layer 0.022 3 relevant
Φ6 2094 device driver 0.03 2 relevant
Φ7 3191 device driver 0.027 5 nonrelevant

α is the cosine score. ω is the window width. This is exactly the

same setup as for zone scoring except we now have more complex
features that capture whether a document is relevant to a query.

31 / 53



Graphic representation of the training set

This should look familiar.

32 / 53



In this case: LTR approach learns a linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 +w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in
the class c .

Points (d1 d2) with
w1d1 + w2d2 < θ are in
the complement class c .

33 / 53



Learning to rank setup for two features

Again, two classes: relevant = 1 and nonrelevant = 0

We now seek a scoring function that combines the values of
the features to generate a value that is (close to) 0 or 1.

We wish this function to be in agreement with our set of
training examples as much as possible.

A linear classifier is defined by an equation of the form:

Score(d , q) = Score(α, ω) = aα+ bω + c ,

where we learn the coefficients a, b, c from training data.

Regression vs. classification

We have only covered binary classification so far.
We can also cast the problem as a regression problem.
This is what we did for zone scoring just now.

34 / 53



Different geometric interpretation of what’s happening

The function Score(α, ω)
represents a plane
“hanging above” the
figure.

Ideally this plane assumes
values close to 1 above
the points marked R, and
values close to 0 above
the points marked N.

0 

2 3 4 5 

0.05 

0.025 

c
o
s
in

e
 s

c
o
re

 !
 

Term proximity " 

R!

R!

R!

R!

R!
R!

R!

R!
R!

R!
R!

N!

N!

N!

N!

N!

N!

N!
N!

N!

N!

35 / 53



Linear classification in this case

We pick a threshold θ.

If Score(α, ω) > θ, we
declare the document
relevant, otherwise we
declare it nonrelevant.

As before, all points that
satisfy Score(α, ω) = θ

form a line (dashed here)
→ linear classifier that
separates relevant from
nonrelevant instances.

0 

2 3 4 5 

0.05 

0.025 

c
o
s
in

e
 s

c
o
re

 !
 

Term proximity " 

R!

R!

R!

R!

R!
R!

R!

R!
R!

R!
R!

N!

N!

N!

N!

N!

N!

N!
N!

N!

N!

36 / 53



Summary

The problem of making a binary relevant/nonrelevant
judgment is cast as a classification or regression problem,
based on a training set of query-document pairs and
associated relevance judgments.

In the example: The classifier corresponds to a line
Score(α, ω) = θ in the α-ω plane.

In principle, any method learning a linear classifier (including
least squares regression) can be used to find this line.

Big advantage of learning to rank: we can avoid hand-tuning
scoring functions and simply learn them from training data.

Bottleneck of learning to rank: maintaining a representative
set of training examples whose relevance assessments must be
made by humans.

37 / 53



Learning to rank for more than two features

The approach can be readily generalized to a large number of
features.

In addition to cosine similarity and query term window, there
are lots of other indicators of relevance: PageRank-style
measures, document age, zone contributions, document
length, etc.

If these measures can be calculated for a training document
collection with relevance judgments, any number of such
measures can be used to machine-learn a classifier.

38 / 53



LTR features used by Microsoft Research (1)

Zones: body, anchor, title, url, whole document

Features derived from standard IR models: query term
number, query term ratio, length, idf, sum of term frequency,
min of term frequency, max of term frequency, mean of term
frequency, variance of term frequency, sum of length
normalized term frequency, min of length normalized term
frequency, max of length normalized term frequency, mean of
length normalized term frequency, variance of length
normalized term frequency, sum of tf-idf, min of tf-idf, max of
tf-idf, mean of tf-idf, variance of tf-idf, boolean model, BM25

39 / 53



LTR features used by Microsoft Research (2)

Language model features: LMIR.ABS, LMIR.DIR, LMIR.JM

Web-specific features: number of slashes in url, length of url,
inlink number, outlink number, PageRank, SiteRank

Spam features: QualityScore

Usage-based features: query-url click count, url click count,
url dwell time

See link in resources for more information

40 / 53



Shortcoming of our LTR approach so far

Approaching IR ranking like we have done so far is not
necessarily the right way to think about the problem.

Statisticians normally first divide problems into classification
problems (where a categorical variable is predicted) versus
regression problems (where a real number is predicted).

In between is the specialized field of ordinal regression where a
ranking is predicted.

Machine learning for ad hoc retrieval is most properly thought
of as an ordinal regression problem, where the goal is to rank
a set of documents for a query, given training data of the
same sort.

Next up: ranking SVMs, a machine learning method that
learns an ordering directly.

41 / 53



Exercise

Example

Example DocID Query Cosine ω Judgment
Φ1 37 linux 0.051 3 relevant
Φ2 37 linux 0.04 5 nonrelevant
Φ3 238 operating system 0.3 2 relevant
Φ4 238 operating system 0.12 3 relevant
Φ5 518 runtime 0.04 2 relevant
Φ6 518 runtime 0.005 10 nonrelevant

Give parameters a, b, c of a line aα+ bω + c that separates
relevant from nonrelevant.

42 / 53



Outline

1 Recap

2 Zone scoring

3 Machine-learned scoring

4 Ranking SVMs

43 / 53



Basic setup for ranking SVMs

As before we begin with a set of judged query-document pairs.

But we do not represent them as query-document-judgment
triples.

Instead, we ask judges, for each training query q, to order the
documents that were returned by the search engine with
respect to relevance to the query.

We again construct a vector of features ψj = ψ(dj , q) for each
query-document pair – exactly as we did before.

For two documents di and dj , we then form the vector of
feature differences:

Φ(di , dj , q) = ψ(di , q)− ψ(dj , q)

44 / 53



Training a ranking SVM

Vector of feature differences: Φ(di , dj , q) = ψ(di , q)−ψ(dj , q)

By hypothesis, one of di and dj has been judged more
relevant.

Notation: We write di ≺ dj for “di precedes dj in the results
ordering”.

If di is judged more relevant than dj , then we will assign the
vector Φ(di , dj , q) the class yijq = +1; otherwise −1.

This gives us a training set of pairs of vectors and
“precedence indicators”. Each of the vectors is computed as
the difference of two query-document vectors.

We can then train an SVM on this training set with the goal
of obtaining a classifier that returns

~wTΦ(di , dj , q) > 0 iff di ≺ dj

45 / 53



Advantages of Ranking SVMs vs. Classification/regression

Documents can be evaluated relative to other candidate
documents for the same query, rather than having to be
mapped to a global scale of goodness.

This often is an easier problem to solve since just a ranking is
required rather than an absolute measure of relevance.

Especially germane in web search, where the ranking at the
very top of the results list is exceedingly important.

46 / 53



Why simple ranking SVMs don’t work that well

Ranking SVMs treat all ranking violations alike.

But some violations are minor problems, e.g., getting the order
of two relevant documents wrong.
Other violations are big problems, e.g., ranking a nonrelevant
document ahead of a relevant document.

Some queries have many relevant documents, others few.

Depending on the training regime, too much emphasis may be
put on queries with many relevant documents.

In most IR settings, getting the order of the top documents
right is key.

In the simple setting we have described, top and bottom ranks
will not be treated differently.

→ Learning-to-rank frameworks actually used in IR are more
complicated than what we have presented here.

47 / 53



Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to
ranking). Proposed by: Yue, Finley, Radlinski, Joachims, ACM
SIGIR 2007. Performance compared to state-of-the-art models:
cosine, tf-idf, BM25, language models (Dirichlet and
Jelinek-Mercer)

Learning-

to-rank clearly better than non-machine-learning
approaches

48 / 53



Optimizing scaling/representation of features

Both of the methods that we’ve seen treat the features as
given and do not attempt to modify the basic representation
of the query-document pairs.

Much of traditional IR weighting involves nonlinear scaling of
basic measurements (such as log-weighting of term frequency,
or idf).

At the present time, machine learning is very good at
producing optimal weights for features in a linear
combination, but it is not good at coming up with good
nonlinear scalings of basic measurements.

This area remains the domain of human feature engineering.

49 / 53



Assessment of learning to rank

The idea of learning to rank is old.

Early work by Norbert Fuhr and William S. Cooper

But it is only very recently that sufficient machine learning
knowledge, training document collections, and computational
power have come together to make this method practical and
exciting.

While skilled humans can do a very good job at defining
ranking functions by hand, hand tuning is difficult, and it has
to be done again for each new document collection and class
of users.

The more features are used in ranking, the more difficult it is
to manually integrate them into one ranking function.

Web search engines use a large number of features → web
search engines need some form of learning to rank.

50 / 53



Exercise

Write down the training set from the last exercise as a training set
for a ranking SVM. Recall: Vector of feature differences:

Φ(di , dj , q) = ψ(di , q)− ψ(dj , q),
~wTΦ(di , dj , q) > 0 iff di ≺ dj

Example

Example DocID Query Cosine ω Judgment
Φ1 37 linux 0.03 3 relevant
Φ2 37 penguin 0.04 5 nonrelevant
Φ3 238 operating system 0.04 2 relevant
Φ4 238 runtime 0.02 3 nonrelevant

51 / 53



Take-away today

Basic idea of learning to rank (LTR): We use machine learning
to learn the relevance score (retrieval status value) of a
document with respect to a query.

Zone scoring: a particularly simple instance of LTR

Machine-learned scoring as a general approach to ranking

Ranking SVMs

52 / 53



Resources

Chapters 6 and 15 of IIR

Resources at http://cislmu.org

References to ranking SVM results
Microsoft learning to rank datasets

53 / 53

http://cislmu.org

	Recap
	Zone scoring
	Machine-learned scoring
	Ranking SVMs

