Introduction to Information Retrieval http://informationretrieval.org

IIR 17: Hierarchical Clustering

Hinrich Schütze & Lucia D. Krisnawati

Center for Information and Language Processing, University of Munich

2013-07-03

Overview

- Recap
- 2 Introduction
- 3 Single-link/Complete-link
- 4 Centroid/GAAC
- 5 Labeling clusters
- **6** Variants

Outline

- Recap
- 2 Introduction
- 3 Single-link/Complete-link
- 4 Centroid/GAAC
- 5 Labeling clusters
- 6 Variants

Applications of clustering in IR

Application	What is clustered?	Benefit	Example
Search result clustering	search results	more effective infor- mation presentation to user	
Scatter-Gather	(subsets of) collection	alternative user inter- face: "search without typing"	
Collection clustering	collection	effective information presentation for ex- ploratory browsing	McKeown et al. 2002, news.google.com
Cluster-based retrieval	collection	higher efficiency: faster search	Salton 1971

Labeling clusters

K-means algorithm

```
K-MEANS(\{\vec{x}_1,\ldots,\vec{x}_N\},K)
   1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)
  2 for k \leftarrow 1 to K
      do \vec{\mu}_k \leftarrow \vec{s}_k
        while stopping criterion has not been met
   5
         do for k \leftarrow 1 to K
   6
              do \omega_k \leftarrow \{\}
               for n \leftarrow 1 to N
   8
              do j \leftarrow \arg \min_{i'} |\vec{\mu}_{i'} - \vec{x}_n|
                    \omega_i \leftarrow \omega_i \cup \{\vec{x}_n\} (reassignment of vectors)
   9
               for k \leftarrow 1 to K
 10
               do \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} (recomputation of centroids)
 11
         return \{\vec{\mu}_1, \dots, \vec{\mu}_K\}
 12
```

Initialization of K-means

- Random seed selection is just one of many ways K-means can be initialized.
- Random seed selection is not very robust: It's easy to get a suboptimal clustering.
- Better heuristics:
 - Select seeds not randomly, but using some heuristic (e.g., filter out outliers or find a set of seeds that has "good coverage" of the document space)
 - Use hierarchical clustering to find good seeds (next class)
 - Select i (e.g., i = 10) different sets of seeds, do a K-means clustering for each, select the clustering with lowest RSS

Take-away today

Take-away today

Recap

Introduction to hierarchical clustering

Take-away today

- Introduction to hierarchical clustering
- Single-link and complete-link clustering

Take-away today

- Introduction to hierarchical clustering
- Single-link and complete-link clustering
- Centroid and group-average agglomerative clustering (GAAC)

Take-away today

- Introduction to hierarchical clustering
- Single-link and complete-link clustering
- Centroid and group-average agglomerative clustering (GAAC)
- Bisecting K-means

Take-away today

- Introduction to hierarchical clustering
- Single-link and complete-link clustering
- Centroid and group-average agglomerative clustering (GAAC)
- Bisecting K-means
- How to label clusters automatically

Introduction

Outline

- 2 Introduction

Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier in Reuters:

Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier in Reuters:

We want to create this hierarchy automatically.

Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier in Reuters:

We want to create this hierarchy automatically. We can do this either top-down or bottom-up.

Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier in Reuters:

We want to create this hierarchy automatically.

We can do this either top-down or bottom-up. The best known bottom-up method is hierarchical agglomerative clustering.

Hierarchical agglomerative clustering (HAC)

• HAC creates a hierarchy in the form of a binary tree.

Hierarchical agglomerative clustering (HAC)

- HAC creates a hierarchy in the form of a binary tree.
- Assumes a similarity measure for determining the similarity of two clusters.

Hierarchical agglomerative clustering (HAC)

- HAC creates a hierarchy in the form of a binary tree.
- Assumes a similarity measure for determining the similarity of two clusters.
- Up to now, our similarity measures were for documents.

Hierarchical agglomerative clustering (HAC)

- HAC creates a hierarchy in the form of a binary tree.
- Assumes a similarity measure for determining the similarity of two clusters.
- Up to now, our similarity measures were for documents.
- We will look at four different cluster similarity measures.

HAC: Basic algorithm

• Start with each document in a separate cluster

- Start with each document in a separate cluster
- Then repeatedly merge the two clusters that are most similar

- Start with each document in a separate cluster
- Then repeatedly merge the two clusters that are most similar
- Until there is only one cluster.

- Start with each document in a separate cluster
- Then repeatedly merge the two clusters that are most similar
- Until there is only one cluster.
- The history of merging is a hierarchy in the form of a binary tree.

- Start with each document in a separate cluster
- Then repeatedly merge the two clusters that are most similar
- Until there is only one cluster.
- The history of merging is a hierarchy in the form of a binary tree.
- The standard way of depicting this history is a dendrogram.

A dendrogram

0.0

The history of mergers bottom to top. can be read off from

Schütze & Krisnawati: Hierarchical clustering

- The history of mergers bottom to top. can be read off from
- The horizontal line of the merger was. what the similarity of each merger tells us

Schütze & Krisnawati: Hierarchical clustering

- The history of mergers bottom to top. can be read off from
- The horizontal line of the merger was. what the similarity of each merger tells us

We can cut the

at 0.1 or 0.4) to get a particular point (e.g., flat clustering. dendrogram at a

Divisive clustering

• Divisive clustering is top-down.

- Divisive clustering is top-down.
- Alternative to HAC (which is bottom up).

- Divisive clustering is top-down.
- Alternative to HAC (which is bottom up).
- Divisive clustering:

- Divisive clustering is top-down.
- Alternative to HAC (which is bottom up).
- Divisive clustering:
 - Start with all docs in one big cluster

- Divisive clustering is top-down.
- Alternative to HAC (which is bottom up).
- Divisive clustering:
 - Start with all docs in one big cluster
 - Then recursively split clusters

- Divisive clustering is top-down.
- Alternative to HAC (which is bottom up).
- Divisive clustering:
 - Start with all docs in one big cluster
 - Then recursively split clusters
 - Eventually each node forms a cluster on its own.

Divisive clustering

- Divisive clustering is top-down.
- Alternative to HAC (which is bottom up).
- Divisive clustering:
 - Start with all docs in one big cluster
 - Then recursively split clusters
 - Eventually each node forms a cluster on its own.
- ullet o Bisecting K-means at the end

Divisive clustering

- Divisive clustering is top-down.
- Alternative to HAC (which is bottom up).
- Divisive clustering:
 - Start with all docs in one big cluster
 - Then recursively split clusters
 - Eventually each node forms a cluster on its own.
- ullet o Bisecting K-means at the end
- For now: HAC (= bottom-up)

Naive HAC algorithm

```
SIMPLEHAC(d_1,\ldots,d_N)
       for n \leftarrow 1 to N
      do for i \leftarrow 1 to N
  3
            do C[n][i] \leftarrow SIM(d_n, d_i)
             I[n] \leftarrow 1 (keeps track of active clusters)
      A \leftarrow [] (collects clustering as a sequence of merges)
       for k \leftarrow 1 to N-1
       do \langle i, m \rangle \leftarrow \arg \max_{\{\langle i, m \rangle : i \neq m \land I[i] = 1 \land I[m] = 1\}} C[i][m]
  8
            A.APPEND(\langle i, m \rangle) (store merge)
  9
            for i \leftarrow 1 to N
            do (use i as representative for \langle i, m \rangle)
 10
 11
                  C[i][j] \leftarrow SIM(\langle i, m \rangle, j)
 12
                  C[j][i] \leftarrow SIM(\langle i, m \rangle, j)
 13
             I[m] \leftarrow 0 (deactivate cluster)
 14
       return A
```

 First, we compute the similarity of all N × N pairs of documents.

- First, we compute the similarity of all N × N pairs of documents.
- Then, in each of *N* iterations:

- First, we compute the similarity of all N × N pairs of documents.
- Then, in each of N iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.

- First, we compute the similarity of all N × N pairs of documents.
- Then, in each of N iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.
 - We merge the two clusters with maximum similarity.

- First, we compute the similarity of all N × N pairs of documents.
- Then, in each of N iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.
 - We merge the two clusters with maximum similarity.
 - We compute the similarity of the new cluster with all other (surviving) clusters.

- First, we compute the similarity of all $N \times N$ pairs of documents.
- Then, in each of *N* iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.
 - We merge the two clusters with maximum similarity.
 - We compute the similarity of the new cluster with all other (surviving) clusters.
- There are O(N) iterations, each performing a $O(N \times N)$ "scan" operation.

- First, we compute the similarity of all N × N pairs of documents.
- Then, in each of N iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.
 - We merge the two clusters with maximum similarity.
 - We compute the similarity of the new cluster with all other (surviving) clusters.
- There are O(N) iterations, each performing a $O(N \times N)$ "scan" operation.
- Overall complexity is $O(N^3)$.

- First, we compute the similarity of all N × N pairs of documents.
- Then, in each of N iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.
 - We merge the two clusters with maximum similarity.
 - We compute the similarity of the new cluster with all other (surviving) clusters.
- There are O(N) iterations, each performing a $O(N \times N)$ "scan" operation.
- Overall complexity is $O(N^3)$.
- We'll look at more efficient algorithms later.

• Single-link: Maximum similarity

- Single-link: Maximum similarity
 - Maximum similarity of any two documents

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity
 - Minimum similarity of any two documents

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity
 - Minimum similarity of any two documents
- Centroid: Average "intersimilarity"

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity
 - Minimum similarity of any two documents
- Centroid: Average "intersimilarity"
 - Average similarity of all document pairs (but excluding pairs of docs in the same cluster)

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity
 - Minimum similarity of any two documents
- Centroid: Average "intersimilarity"
 - Average similarity of all document pairs (but excluding pairs of docs in the same cluster)
 - This is equivalent to the similarity of the centroids.

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity
 - Minimum similarity of any two documents
- Centroid: Average "intersimilarity"
 - Average similarity of all document pairs (but excluding pairs of docs in the same cluster)
 - This is equivalent to the similarity of the centroids.
- Group-average: Average "intrasimilarity"

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity
 - Minimum similarity of any two documents
- Centroid: Average "intersimilarity"
 - Average similarity of all document pairs (but excluding pairs of docs in the same cluster)
 - This is equivalent to the similarity of the centroids.
- Group-average: Average "intrasimilarity"
 - Average similary of all document pairs, including pairs of docs in the same cluster

Cluster similarity: Example

Single-link: Maximum similarity

Single-link: Maximum similarity

Complete-link: Minimum similarity

Complete-link: Minimum similarity

Centroid: Average intersimilarity

intersimilarity = similarity of two documents in different clusters

Centroid: Average intersimilarity

intersimilarity = similarity of two documents in different clusters

Group average: Average intrasimilarity

intrasimilarity = similarity of any pair, including cases where the two documents are in the same cluster

Group average: Average intrasimilarity

intrasimilarity = similarity of any pair, including cases where the two documents are in the same cluster

Cluster similarity: Larger Example

Single-link: Maximum similarity

Single-link: Maximum similarity

Complete-link: Minimum similarity

Complete-link: Minimum similarity

Centroid: Average intersimilarity

Centroid: Average intersimilarity

Group average: Average intrasimilarity

Group average: Average intrasimilarity

Single-link/Complete-link

Outline

- 3 Single-link/Complete-link

Single link HAC

 The similarity of two clusters is the maximum intersimilarity the maximum similarity of a document from the first cluster and a document from the second cluster.

Single link HAC

- The similarity of two clusters is the maximum intersimilarity the maximum similarity of a document from the first cluster and a document from the second cluster.
- Once we have merged two clusters, how do we update the similarity matrix?

Single link HAC

- The similarity of two clusters is the maximum intersimilarity the maximum similarity of a document from the first cluster and a document from the second cluster.
- Once we have merged two clusters, how do we update the similarity matrix?
- This is simple for single link:

$$SIM(\omega_i, (\omega_{k_1} \cup \omega_{k_2})) = max(SIM(\omega_i, \omega_{k_1}), SIM(\omega_i, \omega_{k_2}))$$

This dendrogram was produced by single-link

Schütze & Krisnawati: Hierarchical clustering

 Notice: many small clusters (1 or 2 members) being added to the main cluster

This dendrogram was produced by single-link

- Notice: many small clusters (1 or 2 members) being added to the main cluster
- There is no balanced 2-cluster or 3-cluster clustering that can be derived by cutting the dendrogram.

Complete link HAC

 The similarity of two clusters is the minimum intersimilarity – the minimum similarity of a document from the first cluster and a document from the second cluster.

Complete link HAC

- The similarity of two clusters is the minimum intersimilarity the minimum similarity of a document from the first cluster and a document from the second cluster.
- Once we have merged two clusters, how do we update the similarity matrix?

- The similarity of two clusters is the minimum intersimilarity the minimum similarity of a document from the first cluster and a document from the second cluster.
- Once we have merged two clusters, how do we update the similarity matrix?
- Again, this is simple:

$$SIM(\omega_i, (\omega_{k_1} \cup \omega_{k_2})) = min(SIM(\omega_i, \omega_{k_1}), SIM(\omega_i, \omega_{k_2}))$$

Complete link HAC

- The similarity of two clusters is the minimum intersimilarity the minimum similarity of a document from the first cluster and a document from the second cluster.
- Once we have merged two clusters, how do we update the similarity matrix?
- Again, this is simple:

$$\operatorname{SIM}(\omega_i, (\omega_{k_1} \cup \omega_{k_2})) = \min(\operatorname{SIM}(\omega_i, \omega_{k_1}), \operatorname{SIM}(\omega_i, \omega_{k_2}))$$

 We measure the similarity of two clusters by computing the diameter of the cluster that we would get if we merged them.

Complete-link dendrogram

Schütze & Krisnawati: Hierarchical clustering

Complete-link dendrogram

Notice that this dendrogram is much the single-link one more balanced than

Schütze & Krisnawati: Hierarchical clustering

Complete-link dendrogram

- Notice that this dendrogram is much more balanced than the single-link one.
- We can create a 2-cluster clustering with two clusters of about the same size.

Exercise: Compute single and complete link clusterings

Single-link/Complete-link

Single-link vs. Complete link clustering

Single-link: Chaining

Single-link: Chaining

Single-link: Chaining

Single-link clustering often produces long, straggly clusters. For most applications, these are undesirable.

What 2-cluster clustering will complete-link produce?

Coordinates: $1 + 2 \times \epsilon, 4, 5 + 2 \times \epsilon, 6, 7 - \epsilon$.

What 2-cluster clustering will complete-link produce?

Coordinates: $1 + 2 \times \epsilon, 4, 5 + 2 \times \epsilon, 6, 7 - \epsilon$.

Complete-link: Sensitivity to outliers

• The complete-link clustering of this set splits d_2 from its right neighbors – clearly undesirable.

- The complete-link clustering of this set splits d_2 from its right neighbors - clearly undesirable.
- The reason is the outlier d_1 .

- The complete-link clustering of this set splits d_2 from its right neighbors clearly undesirable.
- The reason is the outlier d_1 .
- This shows that a single outlier can negatively affect the outcome of complete-link clustering.

Labeling clusters

Complete-link: Sensitivity to outliers

- The complete-link clustering of this set splits d_2 from its right neighbors clearly undesirable.
- The reason is the outlier d_1 .
- This shows that a single outlier can negatively affect the outcome of complete-link clustering.
- Single-link clustering does better in this case.

Introduction Single-link/Complete-link Centroid/GAAC Labeli

Outline

- Recap
- 2 Introduction
- 3 Single-link/Complete-link
- 4 Centroid/GAAC
- 5 Labeling clusters
- 6 Variants

Centroid HAC

 The similarity of two clusters is the average intersimilarity – the average similarity of documents from the first cluster with documents from the second cluster.

- The similarity of two clusters is the average intersimilarity the average similarity of documents from the first cluster with documents from the second cluster
- A naive implementation of this definition is inefficient $(O(N^2))$, but the definition is equivalent to computing the similarity of the centroids:

SIM-CENT
$$(\omega_i, \omega_i) = \vec{\mu}(\omega_i) \cdot \vec{\mu}(\omega_i)$$

Centroid HAC

- The similarity of two clusters is the average intersimilarity the average similarity of documents from the first cluster with documents from the second cluster
- A naive implementation of this definition is inefficient $(O(N^2))$, but the definition is equivalent to computing the similarity of the centroids:

SIM-CENT
$$(\omega_i, \omega_j) = \vec{\mu}(\omega_i) \cdot \vec{\mu}(\omega_j)$$

Hence the name: centroid HAC

Centroid HAC

- The similarity of two clusters is the average intersimilarity the average similarity of documents from the first cluster with documents from the second cluster
- A naive implementation of this definition is inefficient $(O(N^2))$, but the definition is equivalent to computing the similarity of the centroids:

SIM-CENT
$$(\omega_i, \omega_j) = \vec{\mu}(\omega_i) \cdot \vec{\mu}(\omega_j)$$

- Hence the name: centroid HAC
- Note: this is the dot product, not cosine similarity!

Exercise: Compute centroid clustering

Centroid clustering

Centroid clustering

Centroid/GAAC

Centroid clustering

• In an inversion, the similarity increases during a merge sequence. Results in an "inverted" dendrogram.

Labeling clusters

- In an inversion, the similarity increases during a merge sequence. Results in an "inverted" dendrogram.
- Below: Similarity of the first merger $(d_1 \cup d_2)$ is -4.0, similarity of second merger $((d_1 \cup d_2) \cup d_3)$ is ≈ -3.5 .

Inversions

 Hierarchical clustering algorithms that allow inversions are inferior.

- Hierarchical clustering algorithms that allow inversions are inferior.
- The rationale for hierarchical clustering is that at any given point, we've found the most coherent clustering for a given *K*.

- Hierarchical clustering algorithms that allow inversions are inferior.
- The rationale for hierarchical clustering is that at any given point, we've found the most coherent clustering for a given K.
- Intuitively: smaller clusterings should be more coherent than larger clusterings.

- Hierarchical clustering algorithms that allow inversions are inferior.
- The rationale for hierarchical clustering is that at any given point, we've found the most coherent clustering for a given K.
- Intuitively: smaller clusterings should be more coherent than larger clusterings.
- An inversion contradicts this intuition: we have a large cluster that is more coherent than one of its subclusters.

- Hierarchical clustering algorithms that allow inversions are inferior.
- The rationale for hierarchical clustering is that at any given point, we've found the most coherent clustering for a given K.
- Intuitively: smaller clusterings should be more coherent than larger clusterings.
- An inversion contradicts this intuition: we have a large cluster that is more coherent than one of its subclusters.
- The fact that inversions can occur in centroid clustering is a reason not to use it.

 GAAC also has an "average-similarity" criterion, but does not have inversions.

Group-average agglomerative clustering (GAAC)

- GAAC also has an "average-similarity" criterion, but does not have inversions.
- The similarity of two clusters is the average intrasimilarity the average similarity of all document pairs (including those from the same cluster).

Group-average agglomerative clustering (GAAC)

- GAAC also has an "average-similarity" criterion, but does not have inversions.
- The similarity of two clusters is the average intrasimilarity the average similarity of all document pairs (including those from the same cluster).
- But we exclude self-similarities.

Group-average agglomerative clustering (GAAC)

• Again, a naive implementation is inefficient $(O(N^2))$ and there is an equivalent, more efficient, centroid-based definition:

$$\begin{split} \text{SIM-GA}(\omega_i,\omega_j) = \\ \frac{1}{(\textit{N}_i + \textit{N}_j)(\textit{N}_i + \textit{N}_j - 1)} [(\sum_{d_m \in \omega_i \cup \omega_i} \vec{d}_m)^2 - (\textit{N}_i + \textit{N}_j)] \end{split}$$

Labeling clusters

• Again, a naive implementation is inefficient $(O(N^2))$ and there is an equivalent, more efficient, centroid-based definition:

$$ext{SIM-GA}(\omega_i,\omega_j) = rac{1}{(N_i+N_j)(N_i+N_j-1)}[(\sum_{d_m\in\omega_i\cup\omega_j}ec{d}_m)^2-(N_i+N_j)]$$

Again, this is the dot product, not cosine similarity.

• Don't use centroid HAC because of inversions.

- Don't use centroid HAC because of inversions.
- In most cases: GAAC is best since it isn't subject to chaining and sensitivity to outliers.

- Don't use centroid HAC because of inversions.
- In most cases: GAAC is best since it isn't subject to chaining and sensitivity to outliers.
- However, we can only use GAAC for vector representations.

- Don't use centroid HAC because of inversions.
- In most cases: GAAC is best since it isn't subject to chaining and sensitivity to outliers.
- However, we can only use GAAC for vector representations.
- For other types of document representations (or if only pairwise similarities for documents are available): use complete-link.

- Don't use centroid HAC because of inversions.
- In most cases: GAAC is best since it isn't subject to chaining and sensitivity to outliers.
- However, we can only use GAAC for vector representations.
- For other types of document representations (or if only pairwise similarities for documents are available): use complete-link.
- There are also some applications for single-link (e.g., duplicate detection in web search).

Flat or hierarchical clustering?

For high efficiency, use flat clustering (or perhaps bisecting k-means)

Flat or hierarchical clustering?

- For high efficiency, use flat clustering (or perhaps bisecting k-means)
- For deterministic results: HAC.

Flat or hierarchical clustering?

- For high efficiency, use flat clustering (or perhaps bisecting k-means)
- For deterministic results: HAC
- When a hierarchical structure is desired: hierarchical algorithm

Flat or hierarchical clustering?

- For high efficiency, use flat clustering (or perhaps bisecting k-means)
- For deterministic results: HAC
- When a hierarchical structure is desired: hierarchical algorithm
- HAC also can be applied if K cannot be predetermined (can start without knowing K)

- Labeling clusters

Major issue in clustering – labeling

 After a clustering algorithm finds a set of clusters: how can they be useful to the end user?

Major issue in clustering – labeling

- After a clustering algorithm finds a set of clusters: how can they be useful to the end user?
- We need a pithy label for each cluster.

Major issue in clustering – labeling

- After a clustering algorithm finds a set of clusters: how can they be useful to the end user?
- We need a pithy label for each cluster.
- For example, in search result clustering for "jaguar", The labels of the three clusters could be "animal", "car", and "operating system".

Major issue in clustering – labeling

- After a clustering algorithm finds a set of clusters: how can they be useful to the end user?
- We need a pithy label for each cluster.
- For example, in search result clustering for "jaguar", The labels of the three clusters could be "animal", "car", and "operating system".
- Topic of this section: How can we automatically find good labels for clusters?

Exercise

- Come up with an algorithm for labeling clusters
- Input: a set of documents, partitioned into K clusters (flat clustering)
- Output: A label for each cluster
- Part of the exercise: What types of labels should we consider?
 Words?

Discriminative labeling

• To label cluster ω , compare ω with all other clusters

Discriminative labeling

- To label cluster ω , compare ω with all other clusters
- ullet Find terms or phrases that distinguish ω from the other clusters

Discriminative labeling

- To label cluster ω , compare ω with all other clusters
- ullet Find terms or phrases that distinguish ω from the other clusters
- We can use any of the feature selection criteria we introduced in text classification to identify discriminating terms: mutual information, χ^2 and frequency.

Discriminative labeling

- To label cluster ω , compare ω with all other clusters
- ullet Find terms or phrases that distinguish ω from the other clusters
- We can use any of the feature selection criteria we introduced in text classification to identify discriminating terms: mutual information, χ^2 and frequency.
- (but the latter is actually not discriminative)

Non-discriminative labeling

 Select terms or phrases based solely on information from the cluster itself

Non-discriminative labeling

- Select terms or phrases based solely on information from the cluster itself
 - E.g., select terms with high weights in the centroid (if we are using a vector space model)

Non-discriminative labeling

- Select terms or phrases based solely on information from the cluster itself
 - E.g., select terms with high weights in the centroid (if we are using a vector space model)
- Non-discriminative methods sometimes select frequent terms that do not distinguish clusters.

Non-discriminative labeling

- Select terms or phrases based solely on information from the cluster itself
 - E.g., select terms with high weights in the centroid (if we are using a vector space model)
- Non-discriminative methods sometimes select frequent terms that do not distinguish clusters.
- For example, MONDAY, TUESDAY, ...in newspaper text

Using titles for labeling clusters

 Terms and phrases are hard to scan and condense into a holistic idea of what the cluster is about.

- Terms and phrases are hard to scan and condense into a holistic idea of what the cluster is about.
- Alternative: titles

- Terms and phrases are hard to scan and condense into a holistic idea of what the cluster is about.
- Alternative: titles
- For example, the titles of two or three documents that are closest to the centroid.

- Terms and phrases are hard to scan and condense into a holistic idea of what the cluster is about.
- Alternative: titles
- For example, the titles of two or three documents that are closest to the centroid.
- Titles are easier to scan than a list of phrases.

Cluster labeling: Example

		labeling method		
	# docs	centroid	mutual information	title
4	622	oil plant mexico production crude power 000 refinery gas bpd	plant oil production barrels crude bpd mexico dolly capac- ity petroleum	MEXICO: Hurricane Dolly heads for Mex- ico coast
9	1017	police security rus- sian people military peace killed told grozny court	police killed military security peace told troops forces rebels people	RUSSIA: Russia's Lebed meets rebel chief in Chechnya
10	1259	00 000 tonnes traders futures wheat prices cents september tonne	delivery traders fu- tures tonne tonnes desk wheat prices 000 00	USA: Export Business - Grain/oilseeds complex

 Three methods: most prominent terms in centroid, differential labeling using MI, title of doc closest to centroid

Cluster labeling: Example

		labeling method		
	# docs	centroid	mutual information	title
4	622	oil plant mexico pro- duction crude power 000 refinery gas bpd	plant oil production barrels crude bpd mexico dolly capac- ity petroleum	MEXICO: Hurricane Dolly heads for Mex- ico coast
9	1017	police security rus- sian people military peace killed told grozny court	police killed military security peace told troops forces rebels people	RUSSIA: Russia's Lebed meets rebel chief in Chechnya
10	1259	00 000 tonnes traders futures wheat prices cents september tonne	delivery traders fu- tures tonne tonnes desk wheat prices 000 00	USA: Export Business - Grain/oilseeds complex

- Three methods: most prominent terms in centroid, differential labeling using MI, title of doc closest to centroid
- All three methods do a pretty good job.

П

Introduction Single-link/Complete-link Centroid/GAAC Labeling

Outline

- Recap
- 2 Introduction
- 3 Single-link/Complete-link
- 4 Centroid/GAAC
- 5 Labeling clusters
- **6** Variants

Variants

Bisecting K-means: A top-down algorithm

Start with all documents in one cluster

Bisecting K-means: A top-down algorithm

- Start with all documents in one cluster
- Split the cluster into 2 using K-means

Bisecting K-means: A top-down algorithm

- Start with all documents in one cluster
- Split the cluster into 2 using K-means
- Of the clusters produced so far, select one to split (e.g. select the largest one)

Bisecting K-means: A top-down algorithm

- Start with all documents in one cluster
- Split the cluster into 2 using K-means
- Of the clusters produced so far, select one to split (e.g. select the largest one)
- Repeat until we have produced the desired number of clusters

Labeling clusters

```
BISECTINGKMEANS(d_1, \ldots, d_N)
     \omega_0 \leftarrow \{\vec{d}_1, \dots, \vec{d}_N\}
      leaves \leftarrow \{\omega_0\}
      for k \leftarrow 1 to K-1
      do \omega_k \leftarrow \text{PickClusterFrom}(leaves)
 5
            \{\omega_i, \omega_i\} \leftarrow \text{KMEANS}(\omega_k, 2)
 6
             leaves \leftarrow leaves \setminus \{\omega_k\} \cup \{\omega_i, \omega_i\}
       return leaves
```

Bisecting K-means

• If we don't generate a complete hierarchy, then a top-down algorithm like bisecting *K*-means is much more efficient than HAC algorithms.

Bisecting K-means

- If we don't generate a complete hierarchy, then a top-down algorithm like bisecting K-means is much more efficient than HAC algorithms.
- But bisecting K-means is not deterministic.

Bisecting K-means

- If we don't generate a complete hierarchy, then a top-down algorithm like bisecting K-means is much more efficient than HAC algorithms.
- But bisecting K-means is not deterministic.
- There are deterministic versions of bisecting K-means (see resources at the end), but they are much less efficient.

Efficient single link clustering

```
SINGLELINK CLUSTERING (d_1, \ldots, d_N, K)
       for n \leftarrow 1 to N
       do for i \leftarrow 1 to N
            do C[n][i].sim \leftarrow SIM(d_n, d_i)
                 C[n][i].index \leftarrow i
      I[n] \leftarrow n
           NBM[n] \leftarrow \arg\max_{X \in \{C[n][i]: n \neq i\}} X.sim
  7 A \leftarrow []
      for n \leftarrow 1 to N-1
       do i_1 \leftarrow \arg\max_{\{i:I[i]=i\}} NBM[i].sim
       i_2 \leftarrow I[NBM[i_1].index]
 10
 11 A.APPEND(\langle i_1, i_2 \rangle)
 12 for i \leftarrow 1 to N
            do if I[i] = i \land i \neq i_1 \land i \neq i_2
 13
 14
                    then C[i_1][i].sim \leftarrow C[i][i_1].sim \leftarrow max(C[i_1][i].sim, C[i_2][i].sim)
                 if I[i] = i_2
 15
                    then I[i] \leftarrow i_1
 16
 17
            NBM[i_1] \leftarrow \arg\max_{X \in \{C[i_1][i]:I[i]=i \land i \neq i_1\}} X.sim
 18
       return A
```

Time complexity of HAC

• The single-link algorithm we just saw is $O(N^2)$.

Time complexity of HAC

- The single-link algorithm we just saw is $O(N^2)$.
- Much more efficient than the $O(N^3)$ algorithm we looked at earlier!

Time complexity of HAC

- The single-link algorithm we just saw is $O(N^2)$.
- Much more efficient than the $O(N^3)$ algorithm we looked at earlier!
- There are also $O(N^2)$ algorithms for complete-link, centroid and GAAC.

Combination similarities of the four algorithms

clustering algorithm	$sim(\ell, k_1, k_2)$	
single-link	$max(sim(\ell,k_1),sim(\ell,k_2))$	
complete-link	$min(sim(\ell,k_1),sim(\ell,k_2))$	
centroid	$\left(rac{1}{N_m}ec{v}_m ight)\cdot\left(rac{1}{N_\ell}ec{v}_\ell ight)$	
group-average	$\frac{1}{(N_m + N_\ell)(N_m + N_\ell - 1)}[(\vec{v}_m + \vec{v}_\ell)^2 - (N_m + N_\ell)]$	

Comparison of HAC algorithms

method	combination similarity	time compl.	optimal?	comment	
single-link	max intersimilarity of any 2 docs	$\Theta(N^2)$	yes	chaining effect	
complete-link	min intersimilarity of any 2 docs	$\Theta(N^2 \log N)$	no	sensitive to outliers	
group-average	average of all sims	$\Theta(N^2 \log N)$	no	best choice for most applications	
centroid	average intersimilarity	$\Theta(N^2 \log N)$	no	inversions can occur	

What to do with the hierarchy?

• Use as is (e.g., for browsing as in Yahoo hierarchy)

What to do with the hierarchy?

- Use as is (e.g., for browsing as in Yahoo hierarchy)
- Cut at a predetermined threshold

What to do with the hierarchy?

- Use as is (e.g., for browsing as in Yahoo hierarchy)
- Cut at a predetermined threshold
- Cut to get a predetermined number of clusters K

What to do with the hierarchy?

- Use as is (e.g., for browsing as in Yahoo hierarchy)
- Cut at a predetermined threshold
- Cut to get a predetermined number of clusters K
 - Ignores hierarchy below and above cutting line.

Take-away today

- Introduction to hierarchical clustering
- Single-link and complete-link clustering
- Centroid and group-average agglomerative clustering (GAAC)
- Bisecting K-means
- How to label clusters automatically

Resources

- Chapter 17 of IIR
- Resources at http://cislmu.org
 - Columbia Newsblaster (a precursor of Google News):
 McKeown et al. (2002)

Resources

- Chapter 17 of IIR
- Resources at http://cislmu.org
 - Columbia Newsblaster (a precursor of Google News):
 McKeown et al. (2002)
 - Bisecting K-means clustering: Steinbach et al. (2000)

Resources

- Chapter 17 of IIR
- Resources at http://cislmu.org
 - Columbia Newsblaster (a precursor of Google News):
 McKeown et al. (2002)
 - Bisecting K-means clustering: Steinbach et al. (2000)
 - PDDP (similar to bisecting K-means; deterministic, but also less efficient): Saravesi and Boley (2004)