TÜ Information Retrieval Übung 1

Heike Adel, Sascha Rothe

Center for Information and Language Processing, University of Munich

April 24, 2014

(i) Find a query (two terms without quotes) which Google does not interpret as a conjunction.

(i) Find a query (two terms without quotes) which Google does not interpret as a conjunction.

e.g.: Maracujasaft retrieval

(i) Find a query (two terms without quotes) which Google does not interpret as a conjunction.

e.g.: Maracujasaft retrieval

Information

Differentiate boolean conjunctions and phrase queries!

(ii) Does Google interpret all queries as a Boolean conjunction?

(ii) Does Google interpret all queries as a Boolean conjunction?

In most cases: yes

Exceptions are for example:

- anchor text
- the page may have changed
- a morphological or orthographic variant of a search word may appear on the page
- a semantic equivalent may appear

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <15,35,735>;
```

which documents match the phrase query "fools rush in"?

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <15,35,735>;
```

which documents match the phrase query "fools rush in"?

 \Rightarrow document 2 matches "fools rush in" at position 1.

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <15,35,735>;
```

which documents match the phrase query "fools rush in"?

- \Rightarrow document 2 matches "fools rush in" at position 1.
- \Rightarrow document 4 matches "fools rush in" at position 8.

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <15,35,735>; which documents match the phrase query "fools rush in"?
```

- \Rightarrow document 2 matches "fools rush in" at position 1.
- ⇒ document 4 matches "fools rush in" at position 8.
- \Rightarrow document 7 matches "fools rush in" at position 3 and 13.

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <15,35,735>;
```

which documents match the phrase query "fools rush in" AND "angels fear to tread"?

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <15,35,735>;
```

which documents match the phrase query "fools rush in" AND "angels fear to tread"?

⇒ document 4:8&12

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>: 7: <15,35,735>;
```

There is something wrong with this positional index. What is the problem?

Given the following positional index

```
ANGELS: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>; FOOLS: 2: <1,17,74,222>; 4: <8,78,108,458>; 7: <3,13,23,193>; FEAR: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>; IN: 2: <3,37,76,444,851>; 4: <10,20,110,470,500>; 7: <5,15,25,195>; RUSH: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>; TO: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>; TREAD: 2: <57,94,333>; 4: <15,35,155>; 7: <20,320>; WHERE: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <15,35,735>;
```

There is something wrong with this positional index. What is the problem?

```
\Rightarrow Only one word can occur at position 15 of document 7. But according to the index, two words occupy this position ("in" and "where")
```

Compute the Levenshtein matrix for the distance between the strings "apfel" (input) and "poems" (output).

Compute the Levenshtein matrix for the distance between the strings "apfel" (input) and "poems" (output).

\Rightarrow Solution:

		р		0		e		m		s	
	0	1	1	2	2	3	3	4	4	5	5
а	1	1	2	2	3	3	4	4	5	5	6
	1	2	1	2	2	3	3	4	4	5	5
n	2	1	2	2	3	3	4	4	5	5	6
р	2	3	1	2	2	3	3	4	4	5	5
f	3	3	2	2	3	3	4	4	5	5	6
'	3	4	2	3	2	3	3	4	4	5	5
e	4	4	3	3	3	2	4	4	5	5	6
	4	5	3	4	3	4	2	3	3	4	4
	5	5	4	4	4	4	3	3	4	4	5
	5	6	4	5	4	5	3	4	3	4	4

Find the shortest path in the matrix:

\Rightarrow Solution:

		р		0		е		m		s	
	0	1	1	2	2	3	3	4	4	5	5
а	1	1	2	2	3	3	4	4	5	5	6
	1	2	1	2	2	3	3	4	4	5	5
n	2	1	2	2	3	3	4	4	5	5	6
р	2	3	1	2	2	3	3	4	4	5	5
f	3	3	2	2	3	3	4	4	5	5	6
'	3	4	2	3	2	3	3	4	4	5	5
e	4	4	3	3	3	2	4	4	5	5	6
6	4	5	3	4	3	4	2	3	3	4	4
1	5	5	4	4	4	4	3	3	4	4	5
	5	6	4	5	4	5	3	4	3	4	4

Find the shortest path in the matrix:

\Rightarrow Solution:

		р		0		e		m		s		
		0	1	1	2	2	3	3	4	4	5	5
а		1	1	2	2	3	3	4	4	5	5	6
		1	2	1	2	2	3	3	4	4	5	5
		2	1	2	2	3	3	4	4	5	5	6
р		2	3	1	2	2	3	3	4	4	5	5
f		3	3	2	2	3	3	4	4	5	5	6
'		3	4	2	3	2	3	3	4	4	5	5
e		4	4	3	3	3	2	4	4	5	5	6
е		4	5	3	4	3	4	2	3	3	4	4
1		5	5	4	4	4	4	3	3	4	4	5
'		5	6	4	5	4	5	3	4	3	4	4

While the Levenshtein sequence of edit operations is not unique, the minimum number of operations is fixed. Let n_i , n_d , n_r be the number of inserts, deletes and replaces in a sequence of operations. Can you find a pair of strings and two different sequences of edit operations σ_1 and σ_2 such that $n_i(\sigma_1) \neq n_i(\sigma_2)$ or $n_d(\sigma_1) \neq n_d(\sigma_2)$ or $n_r(\sigma_1) \neq n_r(\sigma_2)$?

While the Levenshtein sequence of edit operations is not unique, the minimum number of operations is fixed. Let n_i , n_d , n_r be the number of inserts, deletes and replaces in a sequence of operations. Can you find a pair of strings and two different sequences of edit operations σ_1 and σ_2 such that $n_i(\sigma_1) \neq n_i(\sigma_2)$ or $n_d(\sigma_1) \neq n_d(\sigma_2)$ or $n_r(\sigma_1) \neq n_r(\sigma_2)$?

- \Rightarrow Consider the strings "ab" and "ba":
- Levenshtein distance: 2
- operation sequences: σ_1 : replace a with b, replace b with a σ_2 : delete a, copy b, insert a
- Hence: $0=n_i(\sigma_1)\neq n_i(\sigma_2)=1$ and $0=n_d(\sigma_1)\neq n_d(\sigma_2)=1$ and $2=n_r(\sigma_1)\neq n_r(\sigma_2)=0$

Information

We are looking at the **minimum** number of operations:

Each Levenshtein sequence of edit operations has the same total number of operations!

Permutation wildcard index: If you wanted to search for s*ng, what key(s) would you do the lookup on?

Permutation wildcard index: If you wanted to search for s*ng, what key(s) would you do the lookup on?

⇒ We would perform the lookup on the key: ng\$s*

The end

Thank you for your attention!

Do you have any questions?