
TÜ Information Retrieval
Übung 2

Heike Adel, Sascha Rothe

Center for Information and Language Processing, University of Munich

May 8, 2014

1 / 17



Problem 1

Assume that

machines in MapReduce have 100GB of disk space each

the postings list of the term THE has a size of 180GB for a particular
collection

we do not use compression

Then the MapReduce algorithm as described in class cannot be run to
construct the inverted index. Why?
How would you modify the algorithm so that it can handle this case?

2 / 17



Problem 1

Recap

MapReduce as described in class:

3 / 17



Problem 1

Assume that

machines in MapReduce have 100GB of disk space each

the postings list of the term THE has a size of 180GB for a particular
collection

we do not use compression

Then the MapReduce algorithm as described in class cannot be run to
construct the inverted index. Why?

⇒ The algorithm assumes that each term’s postings list will fit on a single
inverter. This is not true for the postings list of THE.

4 / 17



Problem 1

Assume that

machines in MapReduce have 100GB of disk space each

the postings list of the term THE has a size of 180GB for a particular
collection

we do not use compression

Then the MapReduce algorithm as described in class cannot be run to
construct the inverted index. Why?

⇒ The algorithm assumes that each term’s postings list will fit on a single
inverter. This is not true for the postings list of THE.

4 / 17



Problem 1

Assume that

machines in MapReduce have 100GB of disk space each

the postings list of the term THE has a size of 180GB for a particular
collection

we do not use compression

How would you modify the algorithm so that it can handle this case?

⇒ Let N be the largest docID for THE.
The master defines two partitions for the postings list of THE:
(1) THE in documents with docID ≤ N

2

(2) THE in documents with docID > N
2

These shorter postings lists can be sorted by two single inverters.
Afterwards, the master links the end of list (1) to the beginning of list (2).

5 / 17



Problem 1

Assume that

machines in MapReduce have 100GB of disk space each

the postings list of the term THE has a size of 180GB for a particular
collection

we do not use compression

How would you modify the algorithm so that it can handle this case?

⇒ Let N be the largest docID for THE.
The master defines two partitions for the postings list of THE:
(1) THE in documents with docID ≤ N

2

(2) THE in documents with docID > N
2

These shorter postings lists can be sorted by two single inverters.
Afterwards, the master links the end of list (1) to the beginning of list (2).

5 / 17



Problem 2

Given a collection with exactly 4 words a, b, c, d .
The frequency order is a > b > c > d .
The total number of tokens in the collection is 5000.

Assume that Zipf’s law holds exactly for this collection.
What are the frequencies of the four words?

6 / 17



Problem 2

Recap

Zipf’s law:

The i th most frequent term has a collection frequency cfi proportional
to 1

i . Hence: ∃c : cfi = c · 1i

More general: In natural language, there are a few very frequent terms and
very many very rare terms.

7 / 17



Problem 2

Given a collection with exactly 4 words a, b, c, d .
The frequency order is a > b > c > d .
The total number of tokens in the collection is 5000.

Assume that Zipf’s law holds exactly for this collection.
What are the frequencies of the four words?

⇒Assume a appears fa times in the collection. Then:
fa + 1

2 · fa + 1
3 · fa + 1

4 · fa = 5000
fa = 2400
fb = 1

2 · fa = 1200
fc = 1

3 · fa = 800
fd = 1

4 · fa = 600

8 / 17



Problem 2

Given a collection with exactly 4 words a, b, c, d .
The frequency order is a > b > c > d .
The total number of tokens in the collection is 5000.

Assume that Zipf’s law holds exactly for this collection.
What are the frequencies of the four words?

⇒Assume a appears fa times in the collection. Then:
fa + 1

2 · fa + 1
3 · fa + 1

4 · fa = 5000
fa = 2400
fb = 1

2 · fa = 1200
fc = 1

3 · fa = 800
fd = 1

4 · fa = 600

8 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(i) How many unique terms does a web collection of 600,000,000 web
pages containing 600 tokens on average have?
Use the Heaps parameters k = 100 and b = 0.5.

Recap

Heap’s law:

M = k · T b

with M being the size of the vocabulary and T the number of tokens in
the collection

9 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(i) How many unique terms does a web collection of 600,000,000 web
pages containing 600 tokens on average have?
Use the Heaps parameters k = 100 and b = 0.5.

Recap

Heap’s law:

M = k · T b

with M being the size of the vocabulary and T the number of tokens in
the collection

9 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(i) How many unique terms does a web collection of 600,000,000 web
pages containing 600 tokens on average have?
Use the Heaps parameters k = 100 and b = 0.5.

⇒ M = 100 · (600, 000, 000 · 600)0.5 = 60, 000, 000

10 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(i) How many unique terms does a web collection of 600,000,000 web
pages containing 600 tokens on average have?
Use the Heaps parameters k = 100 and b = 0.5.

⇒ M = 100 · (600, 000, 000 · 600)0.5 = 60, 000, 000

10 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(ii) Use Zipf’s law to estimate the proportion of the term vocabulary of
the collection that consists of hapax legomena.
Hint:

∑n
i=1

1
i ≈ ln(n)

⇒ Zipf’s law: cfi ∝ 1/i ⇒ ∃c : cfi = c · 1i
Calculate c :
The sum of all collection frequencies is the total number of tokens T:
(600, 000, 000 · 600) = T =

∑M
i=1 c ·

1
i = c ·

∑60,000,000
i=1

1
i

≈ c · ln(60, 000, 000) ≈ 17.9c
⇒ c = T

17.9 ≈ 2 · 1010

11 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(ii) Use Zipf’s law to estimate the proportion of the term vocabulary of
the collection that consists of hapax legomena.
Hint:

∑n
i=1

1
i ≈ ln(n)

⇒ Zipf’s law: cfi ∝ 1/i ⇒ ∃c : cfi = c · 1i
Calculate c :
The sum of all collection frequencies is the total number of tokens T:
(600, 000, 000 · 600) = T =

∑M
i=1 c ·

1
i = c ·

∑60,000,000
i=1

1
i

≈ c · ln(60, 000, 000) ≈ 17.9c
⇒ c = T

17.9 ≈ 2 · 1010

11 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(ii) Use Zipf’s law to estimate the proportion of the term vocabulary of
the collection that consists of hapax legomena.
Hint:

∑n
i=1

1
i ≈ ln(n)

⇒ Zipf’s law: cfi ∝ 1/i ⇒ cfi = 2 · 1010 · 1i

Calculate the frequency of the least frequent term (i.e. term with rank
i = 60, 000, 000):

cf60,000,000 = 2·1010
60,000,000 ≈

1
3 · 1000

⇒ The least frequent term appears more than once! ⇒ Based on Heap’s
law and Zipf’s law, there are no hapax legomena in the collection!
⇒ The proportion of hapax legomena is 0.

12 / 17



Problem 3

We define a hapax legomenon as a term that occurs exactly once in a
collection. We want to estimate the number of hapax legomena using
Heap’s law and Zipf’s law.

(ii) Use Zipf’s law to estimate the proportion of the term vocabulary of
the collection that consists of hapax legomena.
Hint:

∑n
i=1

1
i ≈ ln(n)

⇒ Zipf’s law: cfi ∝ 1/i ⇒ cfi = 2 · 1010 · 1i

Calculate the frequency of the least frequent term (i.e. term with rank
i = 60, 000, 000):

cf60,000,000 = 2·1010
60,000,000 ≈

1
3 · 1000

⇒ The least frequent term appears more than once! ⇒ Based on Heap’s
law and Zipf’s law, there are no hapax legomena in the collection!
⇒ The proportion of hapax legomena is 0.

12 / 17



Problem 3

Based on Heap’s law and Zipf’s law, there are no hapax legomena in the
collection!

(iii) Do you think that the estimate you get is correct?

⇒ This prediction is not correct. Generally, roughly 50% of the vocabulary
consists of hapax legomena (but this depends on the collection!)

13 / 17



Problem 3

Based on Heap’s law and Zipf’s law, there are no hapax legomena in the
collection!

(iii) Do you think that the estimate you get is correct?

⇒ This prediction is not correct. Generally, roughly 50% of the vocabulary
consists of hapax legomena (but this depends on the collection!)

13 / 17



Problem 3

Based on Heap’s law and Zipf’s law, there are no hapax legomena in the
collection!

(iv) Discuss what possible reasons there might be for the incorrectness of
the estimate

⇒ One of the laws has to be the reason for the incorrect prediction

Heap’s law: fairly accurate (see: class) ⇒ Heap’s law is not the reason

Zipf’s law: bad fit, especially at the low-frequent end ⇒ This is the
reason for the incorrect prediction!

14 / 17



Problem 3

Based on Heap’s law and Zipf’s law, there are no hapax legomena in the
collection!

(iv) Discuss what possible reasons there might be for the incorrectness of
the estimate

⇒ One of the laws has to be the reason for the incorrect prediction

Heap’s law: fairly accurate (see: class) ⇒ Heap’s law is not the reason

Zipf’s law: bad fit, especially at the low-frequent end ⇒ This is the
reason for the incorrect prediction!

14 / 17



Problem 4

γ-codes are inefficient for large numbers (e.g. > 1000) because they
encode the length of the offset in binary code. δ-codes, on the other hand,
use γ-codes for encoding this length.

Definitions

γ-code of G : unary-code(length(offset(G ))), offset(G )

δ-code of G : γ-code(length(offset(G + 1))), offset(G + 1)

Compute the δ-codes for 1, 2, 3, 4, 31, 63, 127, 1023

15 / 17



Problem 4

Compute the δ-codes for 1, 2, 3, 4, 31, 63, 127, 1023
⇒

number δ-code

1 0,0
2 0,1
3 10,0,00
4 10,0,01
31 110,01,00000
63 110,10,000000
127 110,11,0000000
1023 1110,010,0000000000

16 / 17



The end

Thank you for your attention!

Do you have any questions?

17 / 17


