
Lucia D. Krisnawati

Introduction toIntroduction to

2

OverviewOverview

● Introduction to Lucene & Solr

● Getting started

– Indexing using Solr

– Updating & deleting files

– Searching using Solr

● Solr Configuration

3

What is Lucene?What is Lucene?

● Lucene is:

– NOT a crawler
● see Apache Nutch

– NOT an application
● See PoweredBy on the Wiki

– NOT a library for doing Google pageRank

– An open source Java-based IR library enabling
text based search

– Metaphor: Lucene is an engine

4

What is Solr?What is Solr?

● Solr is:

– An open source enterprise search server

– Based on the Lucene Java search library

– A web based application that processes HTTP
request and returns HTTP responses

– completed with XML/HTTP APIs, caching,
replication, and web administration interface.

– Metaphor: Solr is a car

5

Why Solr?Why Solr?

● Some reasons of using Solr:

– Using many Lucene best practices

– uncomplicated setup, configuration and Easy to extend

– Providing faceted navigation, spell checking,
highlighting, clustering, grouping, & any other search
features

– Supporting clients in:
● HTTP
● Java
● Python
● PHP
● Ruby
● JSON

6

Why Solr?Why Solr?

● Some reasons of using Solr:

– Flexible index formats
● New posting list codecs: block, simple text, Append

(HDFS)

– Good indexing performance

– SolrCloud feature (Solr 4.x above)

– Geospatial searches
– Who uses Lucene/Solr?

● Cisco, ebay, Boeing, AT& T, Ford and many, many
others...!

7

Comparison to Database TechnologyComparison to Database Technology

● The most important comparison to make is the data model

– Data model is the organizational structure of data

● RDBMS:

– Its data model is based on multiple tables with lookup keys
between them

– A join capability for querying across tables

– A flexible data model

● Lucene Solr:

– Has a more limiting document oriented data model
● Analogous to a single table without join possibilities
● Document-oriented databases have a rich nested structure

similar to XML/JSON → MongoDB (NoSQL)

– Has a flat document structure
● Supporting multi-valued fields with an array of values

8

Comparison to Database TechnologyComparison to Database Technology

● RDBMS:

– Excell at:
● insert/update efficiency, in-place schema changes,
● multi-user access control, bulk data retrieval
● Supporting rich ad-hoc query features

● Solr:

– Falls short in all of above areas:
● No Updates: if any part of a document in Solr needs

to be updated, the entire document must be replaced.
● Slow commits:

– Solr's search performance & certain features are made due
to extensive caches.

– When a commit operation is done to finalize added
documents, the chaches are rebuilt.

9

Solr as NoSQLSolr as NoSQL

● NoSQL : not only SQL

● Characteristics:

– Non-traditional data stores

– Not designed for SQL type query

– Document oriented, data format agnostic (JSON,
XML, CSV, binary)

● Versioning and optimistic locking

– with Real Time GET, allows read/write/update with
without conflict.

● Atomic updates:

– Can add/remove/change and increment a field in
existing index with/witout re-indexing

10

Important Terminologies in SolrImportant Terminologies in Solr

● A Lucene Index is a collection of documents

● A document is a collection of fields

● A field is a content along with metadata describing
the content

● Field content can have several attributes, eg:

– Tokenized – analyze the content, extracting Tokens
and adding them to inverted index.

– Stored – keep the content in a storage data
structure for use by application.

<field name="id" type="string" indexed="true"
stored="true" required="true"
multiValued="false" />

11

Important Terminologies in SolrImportant Terminologies in Solr

● Solr Core:

– A running instance of a Lucene index along with all Solr
configurations required to use it

– A single application may have 0 or more cores which are run in
isolation

● Request Handler:

– A Solr component that processes requests.
● Commit:

– Solr always attempts to optimize the rate of incoming data that can
be indexed by buffering data in memory before writing it to the index.

– The downside is that data is not available for queries untill it has
been writen to the index.

– A commit operation is necessary to write all the buffered data to the
index & make it available for queries.

12

Getting StartedGetting Started

● https://lucene.apache.org/solr/tutorial.html

● Unzip your Solr release
user:~solr$ unzip -g solr-version.zip

user:~solr$ tar xvzf solr-version.tgz

● Go to the solr directory and change your working directory to
the 'example' directory:

– To the example path and type:
user:~solr/example$ java -jar start.jar

– Under windows, start the Web Server by running start.bat instead.
c:\Applications\sorl\example > start.bat

● Solr can run in any Java Servlet Container & the example index
includes an installation of Jetty

● The 'start.jar' command:

– launches Jetty with the Solr WAR

– Launches the example configs
– starts up the Jetty application server on port 8083

https://lucene.apache.org/solr/tutorial.html

13

Getting StartedGetting Started

● Use your terminal to display the logging information from
Solr.

● Solr is running in your port 8983

● Check it by:

– Open your browser and type:

http://localhost:8983/solr/
● Your Solr server is running but it has no data or document at

all

● Modifying a Solr index can be done by POSTing commands
in variety of formats:

– XML

– JSON

– CSV

– JAVABIN

http://localhost:8983/solr/

14

Solr Core Admin Solr Core Admin

15

Solr Admin User InterfaceSolr Admin User Interface

16

Solr Admin User Interface (UI)Solr Admin User Interface (UI)

● Pages describing each screen of admin UI:

– Dashboard provides link for system-level
information & Solr cores configured for this
instance.

– Logging explains the various logging level
available and how to invoke them

– Core Admin explains how to get management
information about each core

– Java Properties shows the java information about
each core

– Thread Dump lets you see detailed information
about each thread, along with state information.

17

Solr Admin User Interface (UI)Solr Admin User Interface (UI)

● Core-Specific Tools is a section explaining each named core:

– Analysis lets us analyze the data found in specific fields

– Dataimport shows information about the current status of the
Data Import Handler

– Documents provides a form allowing us to execute various Solr
indexing commands directly from browser

– Files shows the current core configuration files such as
solrconfig.xml & schema.xml

– Ping lets us ping a named core & determine whether it is active

– Plugins/Stats shows statistics for plugins & other installed
components

– Query Let us submit a structured query

– Replication shows the current replication status for the core

– Schema Browser displays schema data in a browser window

18

Getting started to IndexingGetting started to Indexing

● An easiest way to indexing:

– Open a new terminal window

– Go to exampledocs directory that contains sample files
& SimplePost Tool, a java-based command line tool,
post.jar

– choose some files and run „java -jar post.jar“:

user:~solr/example/exampledocs$ java -jar post.jar
doc_name.xml

– To check that you have successfully indexed those
document:

● go to admin interface to „query“ tab, and enter a
query(ies) relating to your indexed documents.

● Click „execute query“ button.
● You will see the result in the format you choose

19

Solr Indexing OptionSolr Indexing Option

[Hatcher, 2011]

20

Indexing through Request HandlerIndexing through Request Handler

● Updating a Solr Index with XML

● Techniques:

– /update POST to with post.jar command

21

Indexing through Request HandlerIndexing through Request Handler

● Using Admin Interface:
● Go to tab Documents
● Choose the document type:

– File upload (from your file system)
– Creating your own document on the chosen format

22

Indexing CSV FilesIndexing CSV Files

● Beside using request-handler, indexing csv files to
Solr can be done by

– Sending files over HTTP:
cd example/exampledocs

curl http://localhost://8983/solr/update/csv --data-binary
@books.csv -H 'content-type:text/csv; charset=utf-8'

– Or streaming from the file system:
cd example/exampledocs

curl http://localhost:8983/solr/update/csv?stream.file=
exampledocs /data.csv&stream.contentType=text/csv;
charset=utf-8

http://localhost://8983/solr/update/csv

23

Updating DocumentsUpdating Documents

● Solr uses the „UniqueKey“ to determine the
„identity“ of a document

● Adding the same document to the index with the
same uniqueKey as an existing document means
the new document will replace the original.

● An „update“ is actually 2 steps, internally:

– Delete a document with that id

– Add the new document

– So documents are „replaced“, not deleted

– No field-level updating – a whole document has to
be replaced

24

Deleting DocumentsDeleting Documents

● Document can be deleted using SimplePost Tool
that sends raw XML to a Solr port:

– Using a delete by id:

<delete><id>001</id></delete>

user:~solr/example/exampledocs$ java -Dcommit=false
-Ddata=args -jar post.jar “<delete><id>001</id></delete>“

– Using a delete by query:

<query><delete>name:information</delete></query>

user:~solr/example/exampledocs$ java -Ddata=args
-Dcommit=yes -jar post.jar
“<query><delete>name:information</delete></query>“

25

Deleting DocumentsDeleting Documents

● When a document is deleted it still exists in an
index segment:

– The example configuration uses Solr's
„autoCommit“ → automatically persist this change
to the index

– Check in the admin GUI, 'plugin/stats' for
updateHandler

– If deleteById value drops as the
cumulative_deletesById & autocommit values
increase, the delete to disk has been done.

● You can force a new searcher to be opened to
reflect these changes by sending an explicit
commit command:

java -jar post.jar -

26

Searching in SolrSearching in Solr

● The search query is processed by a Request Handler:

– Request Handler calls a query parser

– Query parser interprets query's term & parameters

– Input to a query parser can include:
● Search strings – common terms
● Parameters for fine tuning, eg. Boolean logic
● Parameters for controlling the presentation of the query

response, eg. Specifying the order in which results are diplayed.

– Solr supports:
● Highlighting to relevant terms
● Snippets → 3-4 lines of texts offering a description of a search

result
● Faceting → arrangement of search results into categories which

are based on index terms.

27

Searching in Solr: FacetingSearching in Solr: Faceting

Faceting

To see the faceting, access the Velocity sample search
UI: http://localhost:8983/solr/browse

28

Searching in Solr: Higlighting & FacetingSearching in Solr: Higlighting & Faceting

29

Searching in SolrSearching in Solr

● Searching in Solr can be done by:

– Sending HTTP Get or Post requests
● http://localhost:8983/solr/select?q=dell

– The Query Form provided in the Web Admin

● Sorting:

– Solr provides a simple method to sort on 1 or more
indexed fields.

– Use the „sort“ parameter:
● …?q=lcd&sort=price asc

● Higlighting:

– …?q=lcd&fl=name,price&hl=true&hl.fl=name,price

http://localhost:8983/solr/select?q=dell

30

Solr's Use Case scenarioSolr's Use Case scenario

https://cwiki.apache.org/confluence/display/solr/A+quick+overview

31

Solr's Use Case ScenarioSolr's Use Case Scenario

● Solr runs alongside another application in web serve,
eg. an online store application.

● Solr makes it easy to add capability to search through,
eg the online store through the following steps:

– Define schema:
● The schema tells Solr about the contents of documents it

will be indexing:
● The schema would define fields for: product name,

description, price, manufacturer, etc.

– Deploy Solr to your application server

– Feed Solr the documents for which your users will
search

– Expose search functionality in your application

32

Solr ConfigurationSolr Configuration

● Solr is configured using 3 main files:

1. solr.xml:
● Specifying configuration options for Solr core
● Allowing to configure multiple cores

2. solrconfig.xml:
● controlling high-level behaviour
● defining Solr's behaviour as it indexes content and

responds to queries
● Being able to specify an alternate location for the

data directory
● an example of solrconfig.xml can be found in Solr

Administration UI, tab Config.

33

Solr ConfigurationSolr Configuration

● Solr is configured using 3 main files:

3. schema.xml:
● Describing the documents indexed by Solr.
● Defining a document as a collection of fields

34

Solr Configuration: solr.xmlSolr Configuration: solr.xml

● The default format → solr/example/solr/solr.xml

● Solr cores are configured by placing a file name
core.properties in subdirectory under solr.home.

– Cores maybe anywhere in the tree with an exception that
they may not be defined under the existing core.

This is not allowed:
./cores/collection1/core.properties

./cores/colection1/coremore/collection2/core.properties

but this is legal/allowed:
./cores/somecores/collection1/core.properties

./cores/somecores/collection2/core.properties

– A minimal core.properties file looks like this:

name=collection1

35

Solr Configuration: solr.xmlSolr Configuration: solr.xml

● Solr.xml parameters:

– The <solr> element:
● The root element of solr.xml
● There are no attribute that can be specified in the <solr>
● Nodes: adminHandler, collectionsHandler, infoHandler,

coreLoadThreads, etc (see cwiki.apache.org for node
functions)

– <solrcloud>: defines several paremeters that relate to
solrCloud.

– <logging>: defines classes to use for logging

– <logging><watcher>: defines the size & threshold of log
events

– <shardHandlerFactory>: costumize share handlers
defined in solr.xml

36

Solr Configuration: solr.xmlSolr Configuration: solr.xml

● The core.properties file:

– Is a simple java properties where each line is a key=value pair

– Use hash(#) or bang (!) characters to specify comment-to-end-
of-line.

– The recognized properties:

name → specifying the name of the SolrCore

config → specifying the configuration file name for a given core,
default is solrconfig.xml.

– Schema → specifying schema file name for a given core,
default is schema.xml.

– Datadir → specifying core's data directory as a path relative to
the instance dir

– Properties → specifying the name of properties file for this core.
The value can be an absolute pathname to the value of
instanceDir.

37

Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● The solrconfig.xml file is found in solr/conf directory

● In solrconfig.xml, the important features that need to
configure are:

– Request handler

– Listeners (processes that listen for particular
query-related events).

– The Request Dispatcher for managing HTTP
communications

– The Admin Web interface

– Parameters related to replication and duplication

38

Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● Request Handler:

– Processes requests coming to Solr.

– The requests might take in the form of queries or index updates.

– Every request handler is defined with a name and a class.

– The name of the request handler is referenced with the request to solr, eg. If
'/select' is appended to the end, then a query can be made:

http://localhost:8983/solr/collection1/select?q=solr

– The primary request handler defined is SearchHandlers.

– The default solrconfig.xml for request handler looks like:

 <requestHandler name="/select" class="solr.SearchHandler">

 <lst name="defaults">

 <str name="echoParams">explicit</str>

 <int name="rows">10</int>

 <str name="df">text</str>

 </lst>

 </requestHandler>

39

Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● Request Handler:

– The default example defines the following
parameters:

● rows → how many search results to return, eg. 10 rows
● df → the default field to search is 'text' field
● EchoParams → the parameters defined in the query

should be returned when debug information is
returned.

– Other options for SearchHandler besides defaults:
● appends: allows definition of parameters that are added

to user query, eg. We define fq for filter query

<lst name=“append“>

 <str name=“fq“>inStock:true</str>

</lst>

40

Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● Request Handler:

– Other options for SearchHandler besides defaults:
● Invariants: allows definition of parameters that can't

be overriden by a client.
– The values defined in 'invariants' is always used

regardless of the values specified by user, client in
'defaults' or in 'appends', eg

<lst name=“invariants“>

 <str name=“facet.field“>cat</str>

 <str name=“facet.query“>price:[* to 500]</str>

</lst>

41

Configuring Schema.xmlConfiguring Schema.xml

● Schema.xml is usually the first file to configure.

● The schema declares:

– What kind of fields there are

– Which fields shoud be us as unique/primary key

– Which fields are required

– How to index and search each field

● The most important tags in schema.xml are:

– <fieldtypes> : Specifying and defining all types of
fields

– <field> : Defining your document structures

42

Configuring Schema.xmlConfiguring Schema.xml

<schema name="example" version="1.5">

<field name="content" type="text_general" indexed="false" stored="true"
multiValued="true"/>

 <field name="text" type="text_general" indexed="true" stored="false"

 multiValued="true"/>

 <fieldType name="text_general" class="solr.TextField" positionIncrementGap="100">

 <analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />

 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>

 <analyzer type="query">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />

 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>

 </fieldType>

</schema>

43

ReferencesReferences

● Smiley, D. & Pugh, E. (2011). Apache Solr 3
Enterprise Search Server. Birmingham: Packt
Publishing.

● Solr Wiki: http://wiki.apache.org/solr/

● Apache solr Tutorial:
https://lucene.apache.org/solr/tutorial.html

http://wiki.apache.org/solr/
https://lucene.apache.org/solr/tutorial.html

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

