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OverviewOverview

● Introduction to Lucene & Solr

● Getting started

– Indexing using Solr

– Updating & deleting files

– Searching using Solr 

● Solr Configuration
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What is Lucene?What is Lucene?

● Lucene is:

– NOT a crawler
● see  Apache Nutch

– NOT an application
● See PoweredBy on the Wiki

– NOT a library for doing Google pageRank

– An open source Java-based IR library enabling 
text based search

– Metaphor: Lucene is an engine
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What is Solr?What is Solr?

● Solr is:

– An open source enterprise search server

– Based on the Lucene Java search library

– A web based application that processes HTTP 
request and returns HTTP responses

– completed with XML/HTTP APIs, caching, 
replication, and web administration interface.

– Metaphor: Solr is a car 
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Why Solr?Why Solr?

● Some reasons of using Solr:

– Using many Lucene best practices

– uncomplicated setup, configuration and Easy to extend

– Providing faceted navigation, spell checking, 
highlighting, clustering, grouping, & any other search 
features

– Supporting clients in:
● HTTP
● Java
● Python
● PHP
● Ruby
● JSON 
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Why Solr?Why Solr?

● Some reasons of using Solr:

– Flexible index formats
● New posting list codecs: block, simple text, Append 

(HDFS)

– Good indexing performance

– SolrCloud feature (Solr 4.x above)

– Geospatial searches
– Who uses Lucene/Solr?

● Cisco, ebay, Boeing, AT& T, Ford and many, many 
others...!
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Comparison to Database TechnologyComparison to Database Technology

● The most important comparison to make is the data model

– Data model is the organizational structure of data

● RDBMS:

– Its data model is based on multiple tables with lookup keys 
between them

– A join capability for querying across tables

– A flexible data model

● Lucene Solr:

– Has a more limiting document oriented data model
● Analogous to a single table without join possibilities
● Document-oriented databases have a rich nested structure 

similar to XML/JSON → MongoDB (NoSQL)

– Has a flat document structure
● Supporting multi-valued fields with an array of values
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Comparison to Database TechnologyComparison to Database Technology

● RDBMS:

– Excell at:
● insert/update efficiency, in-place schema changes, 
● multi-user access control, bulk data retrieval
● Supporting rich ad-hoc query features

● Solr:

– Falls short in all of above areas:
● No Updates: if any part of a document in Solr needs 

to be updated, the entire document must be replaced.
● Slow commits: 

– Solr's search performance & certain features are made due 
to extensive caches.

– When a commit operation is done to finalize added 
documents, the chaches are rebuilt.
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Solr as NoSQLSolr as NoSQL

● NoSQL : not only SQL

● Characteristics:

– Non-traditional data stores

– Not designed for SQL type query

– Document oriented, data format agnostic (JSON, 
XML, CSV, binary)

● Versioning and optimistic locking

– with Real Time GET, allows read/write/update with 
without conflict.

● Atomic updates:

– Can add/remove/change and increment a field in 
existing index with/witout re-indexing 
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Important Terminologies in SolrImportant Terminologies in Solr

● A Lucene Index is a collection of documents

● A document is a collection of fields

● A field is a content along with metadata describing 
the content

● Field content can have several attributes, eg:

– Tokenized – analyze the content, extracting Tokens 
and adding them to inverted index.

– Stored – keep the content in a storage data 
structure for use by application.

<field name="id" type="string" indexed="true" 
stored="true" required="true" 
multiValued="false" /> 
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Important Terminologies in SolrImportant Terminologies in Solr

● Solr Core:

– A running instance of a Lucene index along with all Solr 
configurations required to use it

– A single application may have 0 or more cores which are run in 
isolation

● Request Handler:

–  A Solr component that processes requests.
● Commit:

– Solr always attempts to optimize the rate of incoming data that can 
be indexed by buffering data in memory before writing it to the index. 

– The downside is that data is not available for queries untill it has 
been writen to the index.

– A commit operation is necessary to write all the buffered data to the 
index & make it available for queries.
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Getting StartedGetting Started

● https://lucene.apache.org/solr/tutorial.html

● Unzip your Solr release 
user:~solr$ unzip -g solr-version.zip 

user:~solr$ tar xvzf solr-version.tgz

● Go to the solr directory and change your working directory to 
the 'example' directory:

– To the example path and type:
user:~solr/example$ java -jar start.jar

– Under windows, start the Web Server by running start.bat instead.
c:\Applications\sorl\example > start.bat

● Solr can run in any Java Servlet Container & the example index 
includes an installation of Jetty

● The 'start.jar' command:

– launches Jetty with the Solr WAR

– Launches the example configs
– starts up the Jetty application server on port 8083

https://lucene.apache.org/solr/tutorial.html
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Getting StartedGetting Started

● Use your terminal to display the logging information from 
Solr.

● Solr is running in your port 8983

● Check it by:

– Open your browser and type:

http://localhost:8983/solr/
● Your Solr server is running but it has no data or document at 

all

● Modifying a Solr index can be done by POSTing commands 
in variety of formats:

– XML

– JSON

– CSV

– JAVABIN

http://localhost:8983/solr/
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Solr Core Admin Solr Core Admin 
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Solr Admin User InterfaceSolr Admin User Interface
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Solr Admin User Interface (UI)Solr Admin User Interface (UI)

● Pages describing each screen of admin UI:

– Dashboard provides link for system-level 
information & Solr cores configured for this 
instance.

– Logging explains the various logging level 
available and how to invoke them

– Core Admin explains how to get management 
information about each core

– Java Properties shows the java information about 
each core

– Thread Dump lets you see detailed information 
about each thread, along with state information. 
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Solr Admin User Interface (UI)Solr Admin User Interface (UI)

● Core-Specific Tools is a section explaining each named core:

– Analysis lets us analyze the data found in specific fields

– Dataimport shows information about the current status of the 
Data Import Handler

– Documents provides a form allowing us to execute various Solr 
indexing commands directly from browser

– Files shows the current core configuration files such as 
solrconfig.xml & schema.xml

– Ping lets us ping a named core & determine whether it is active

– Plugins/Stats shows statistics for plugins & other installed 
components

– Query Let us submit a structured query

– Replication shows the current replication status for the core

– Schema Browser displays schema data in a browser window
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Getting started to IndexingGetting started to Indexing

● An easiest way to indexing:

– Open a new terminal window

– Go to exampledocs directory that contains sample files 
& SimplePost Tool, a java-based command line tool, 
post.jar

– choose some files and run „java -jar post.jar“:

user:~solr/example/exampledocs$ java -jar post.jar 
doc_name.xml 

– To check that you have successfully indexed those 
document:

● go to admin interface to „query“ tab, and enter a 
query(ies) relating to your indexed documents.

● Click „execute query“ button.
● You will see the result in the format you choose
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Solr Indexing OptionSolr Indexing Option

[Hatcher, 2011]
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Indexing through Request HandlerIndexing through Request Handler

● Updating a Solr Index with XML

● Techniques:

– /update       POST to with post.jar command 
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Indexing through Request HandlerIndexing through Request Handler

● Using Admin Interface:
● Go to tab Documents
● Choose the document type:

– File upload (from your file system)
– Creating your own document on the chosen format
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Indexing CSV FilesIndexing CSV Files

● Beside using request-handler, indexing csv files to 
Solr can be done by

– Sending files over HTTP:
cd example/exampledocs

curl http://localhost://8983/solr/update/csv --data-binary 
@books.csv -H 'content-type:text/csv; charset=utf-8'

– Or streaming from the file system:
cd example/exampledocs

curl http://localhost:8983/solr/update/csv?stream.file= 
exampledocs /data.csv&stream.contentType=text/csv; 
charset=utf-8

http://localhost://8983/solr/update/csv


23

Updating DocumentsUpdating Documents

● Solr uses the „UniqueKey“ to determine the 
„identity“ of a document

● Adding the same document to the index with the 
same uniqueKey as an existing document means 
the new document will replace the original.

● An „update“ is actually 2 steps, internally:

– Delete a document with that id

– Add the new document

– So documents are „replaced“, not deleted

– No field-level updating – a whole document has to 
be replaced
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Deleting DocumentsDeleting Documents

● Document can be deleted using SimplePost Tool 
that sends raw XML to a Solr port:

– Using a delete by id:

<delete><id>001</id></delete>

user:~solr/example/exampledocs$ java  -Dcommit=false 
-Ddata=args -jar post.jar “<delete><id>001</id></delete>“

– Using a delete by query:

<query><delete>name:information</delete></query>

user:~solr/example/exampledocs$ java -Ddata=args 
-Dcommit=yes -jar post.jar 
“<query><delete>name:information</delete></query>“
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Deleting DocumentsDeleting Documents

● When a document is deleted it still exists in an 
index segment:

– The example configuration uses Solr's 
„autoCommit“ → automatically persist this change 
to the index

– Check in the admin GUI, 'plugin/stats' for 
updateHandler 

– If deleteById value drops as the 
cumulative_deletesById & autocommit values 
increase, the delete to disk has been done.

● You can force a new searcher to be opened to 
reflect these changes by sending an explicit 
commit command:

java -jar post.jar - 
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Searching in SolrSearching in Solr

● The search query is processed by a Request Handler:

– Request Handler calls a query parser

– Query parser interprets query's term & parameters

– Input to a query parser can include:
● Search strings – common terms
● Parameters for fine tuning, eg. Boolean logic
● Parameters for controlling the presentation of the query 

response, eg. Specifying the order in which results are diplayed.

– Solr supports:
● Highlighting to relevant terms
● Snippets → 3-4 lines of texts offering a description of a search 

result
● Faceting → arrangement of search results into categories which 

are based on index terms.
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Searching in Solr: FacetingSearching in Solr: Faceting

Faceting

To see the faceting, access the Velocity sample search 
UI: http://localhost:8983/solr/browse
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Searching in Solr: Higlighting & FacetingSearching in Solr: Higlighting & Faceting
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Searching in SolrSearching in Solr

● Searching in Solr can be done by:

– Sending HTTP Get or Post requests
● http://localhost:8983/solr/select?q=dell 

– The Query Form provided in the Web Admin

● Sorting:

– Solr provides a simple method to sort on 1 or more 
indexed fields.

– Use the „sort“ parameter:
● …?q=lcd&sort=price asc

● Higlighting:

– …?q=lcd&fl=name,price&hl=true&hl.fl=name,price

http://localhost:8983/solr/select?q=dell
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Solr's Use Case scenarioSolr's Use Case scenario

https://cwiki.apache.org/confluence/display/solr/A+quick+overview
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Solr's Use Case ScenarioSolr's Use Case Scenario

● Solr runs alongside another application in web serve, 
eg. an online store application.

● Solr makes it easy to add capability to search through, 
eg the online store through the following steps:

– Define schema:
● The schema tells Solr about the contents of documents it 

will be indexing:
● The schema would define fields for: product name, 

description, price, manufacturer, etc.

– Deploy Solr to your application server

– Feed Solr the documents for which your users will 
search

– Expose search functionality in your application
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Solr ConfigurationSolr Configuration

● Solr is configured using 3 main files:

1. solr.xml:
● Specifying configuration options for Solr core
● Allowing to configure multiple cores

2. solrconfig.xml:
● controlling high-level behaviour
● defining Solr's behaviour as it indexes content and 

responds to queries
● Being able to specify an alternate location for the 

data directory
● an example of solrconfig.xml can be found in Solr 

Administration UI, tab Config.
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Solr ConfigurationSolr Configuration

● Solr is configured using 3 main files:

3. schema.xml:
● Describing the documents indexed by Solr.
● Defining a document as a collection of fields
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Solr Configuration: solr.xmlSolr Configuration: solr.xml

● The default format → solr/example/solr/solr.xml

● Solr cores are configured by placing a file name 
core.properties in subdirectory under solr.home.

– Cores maybe anywhere in the tree with an exception that 
they may not be defined under the existing core.

This is not allowed:
./cores/collection1/core.properties

./cores/colection1/coremore/collection2/core.properties 

but this is legal/allowed:
./cores/somecores/collection1/core.properties

./cores/somecores/collection2/core.properties

– A minimal core.properties file looks like this:

name=collection1
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Solr Configuration: solr.xmlSolr Configuration: solr.xml

● Solr.xml parameters:

– The <solr> element:
● The root element of solr.xml
● There are no attribute that can be specified in the <solr>
● Nodes: adminHandler, collectionsHandler, infoHandler, 

coreLoadThreads, etc (see cwiki.apache.org for node 
functions)

– <solrcloud>: defines several paremeters that relate to 
solrCloud.

– <logging>: defines classes to use for logging

– <logging><watcher>: defines the size & threshold of log 
events

– <shardHandlerFactory>: costumize share handlers 
defined in solr.xml
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Solr Configuration: solr.xmlSolr Configuration: solr.xml

● The core.properties file:

– Is a simple java properties where each line is a key=value pair

– Use hash(#) or bang (!) characters to specify comment-to-end-
of-line.

– The recognized properties:

name → specifying the name of the SolrCore

config → specifying the configuration file name for a given core, 
default is solrconfig.xml. 

– Schema → specifying schema file name for a given core, 
default is schema.xml.

– Datadir → specifying core's data directory as a path relative to 
the instance dir

– Properties → specifying the name of properties file for this core. 
The value can be an absolute pathname to the value of 
instanceDir.  
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Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● The solrconfig.xml file is found in solr/conf directory

● In solrconfig.xml, the important features that need to 
configure are:

– Request handler

– Listeners (processes that listen for particular 
query-related events).

– The Request Dispatcher for managing HTTP 
communications

– The Admin Web interface

– Parameters related to replication and duplication
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Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● Request Handler:

– Processes requests coming to Solr.

– The requests might take in the form of queries or index updates.

– Every request handler is defined with a name and a class.

– The name of the request handler is referenced with the request to solr, eg. If 
'/select' is appended to the end, then a query can be made:

http://localhost:8983/solr/collection1/select?q=solr 

– The primary request handler defined is SearchHandlers.

– The default solrconfig.xml for request handler looks like:

 <requestHandler name="/select" class="solr.SearchHandler">

      <lst name="defaults">

             <str name="echoParams">explicit</str>

             <int name="rows">10</int>

       <str name="df">text</str>

     </lst>

 </requestHandler>
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Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● Request Handler:

– The default example defines the following 
parameters: 

● rows → how many search results to return, eg. 10 rows
● df → the default field to search is 'text' field
● EchoParams → the parameters defined in the query 

should be returned when debug information is 
returned.

– Other options for SearchHandler besides defaults:
● appends: allows definition of parameters that are added 

to user query, eg. We define fq for filter query

<lst name=“append“>

     <str name=“fq“>inStock:true</str>

</lst>
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Configuring Solrconfig.xmlConfiguring Solrconfig.xml

● Request Handler:

– Other options for SearchHandler besides defaults:
● Invariants: allows definition of parameters that can't 

be overriden by a client.
– The values defined in 'invariants' is always used 

regardless of the values specified by user, client in 
'defaults' or in 'appends', eg

<lst name=“invariants“>

    <str name=“facet.field“>cat</str>

    <str name=“facet.query“>price:[* to 500]</str>

</lst>
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Configuring Schema.xmlConfiguring Schema.xml

● Schema.xml is usually the first file to configure.

● The schema declares:

– What kind of fields there are

– Which fields shoud be us as unique/primary key

– Which fields are required

– How to index and search each field

● The most important tags in schema.xml are:

– <fieldtypes> : Specifying and defining all types of 
fields

– <field> : Defining your document structures
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Configuring Schema.xmlConfiguring Schema.xml

<schema name="example" version="1.5">

<field name="content" type="text_general" indexed="false" stored="true" 
multiValued="true"/>

   <field name="text" type="text_general" indexed="true" stored="false" 

       multiValued="true"/>

    <fieldType name="text_general" class="solr.TextField" positionIncrementGap="100">

        <analyzer type="index">

            <tokenizer class="solr.StandardTokenizerFactory"/>

            <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />

            <filter class="solr.LowerCaseFilterFactory"/>

         </analyzer>

         <analyzer type="query">

                <tokenizer class="solr.StandardTokenizerFactory"/>

                <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />

                <filter class="solr.LowerCaseFilterFactory"/>

         </analyzer>

    </fieldType>

</schema>
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