Einführung in die Computerlinguistik Decision Trees

Hinrich Schütze & Robert Zangenfeind

Centrum für Informations- und Sprachverarbeitung, LMU München

2015-11-23

This lecture is based on Russell and Norvig's introduction to artificial intelligence.

Introduction to decision trees

- Introduction to decision trees
- (Almost) fully understand one complex machine learning model

- Introduction to decision trees
- (Almost) fully understand one complex machine learning model
- Basis for hands-on training and applying this model in next practical exercise

- Introduction to decision trees
- (Almost) fully understand one complex machine learning model
- Basis for hands-on training and applying this model in next practical exercise
- Exam: questions testing basic understanding of decision trees, but no formulas

Overview

Decision trees

2 NLTK

Decision trees

2 NLTK

Attributes

Attributes

As an example, we will build a decision tree to decide whether to wait for a table at a restaurant. The aim here is to learn a definition for the **goal predicate** *WillWait*. First we list the attributes that we will consider as part of the input:

- 1. Alternate: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays.
- 4. Hungry: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
- 9. Type: the kind of restaurant (French, Italian, Thai, or burger).
- 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, or >60).

Decision tree for deciding whether to wait

MITK

Decision tree for deciding whether to wait

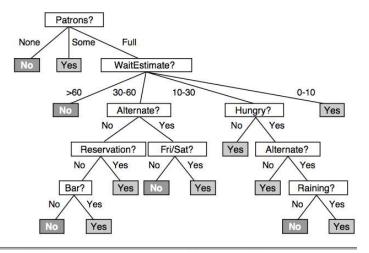


Figure 18.2 A decision tree for deciding whether to wait for a table.

(explain one path)

Expressiveness of decision trees

Expressiveness of decision trees

18.3.2 Expressiveness of decision trees

A Boolean decision tree is equivalent to a logical expression of the form

$$Goal \Leftrightarrow (Path_1 \vee Path_2 \vee \cdots)$$
,

where each $Path_i$ has the form

$$Path = (A_i = a_i \wedge A_j = a_j \wedge \cdots)$$
,

that is, the goal is true if and only if there is a path through the tree that ends in a positive result. Since this is equivalent to disjunctive normal form, that means that any function in propositional logic can be expressed as a decision tree. As an example, the rightmost path in Figure 18.2 is

$$Path = (Patrons = Full \land WaitEstimate = 0-10)$$
.

Training set

Training set

Example	Input Attributes									Goal	
Danipio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type Est	Est	WillWait
X 1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = Yes$
X 7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = No$
x ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
x ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Yes$

Usefulness of attributes

Usefulness of attributes

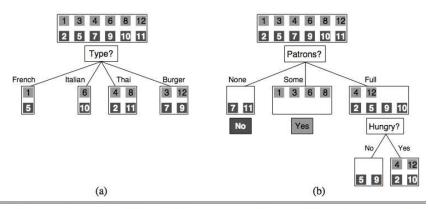


Figure 18.4 Splitting the examples by testing on attributes. At each node we show the positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on *Type* brings us no nearer to distinguishing between positive and negative examples. (b) Splitting on *Patrons* does a good job of separating positive and negative examples. After splitting on *Patrons*, *Hungry* is a fairly good second test.

Decision tree learning

Decision tree learning

 $\begin{array}{ll} \textbf{function} & \text{DECISION-TREE-LEARNING} (examples, attributes, parent_examples) & \textbf{returns} \\ \textbf{a} \text{ tree} \end{array}$

```
if examples is empty then return Plurality-Value(parent_examples) else if all examples have the same classification then return the classification else if attributes is empty then return Plurality-Value(examples) else attr \leftarrow \operatorname{argmax}_{a \in attributes} \text{ IMPORTANCE}(a, examples) \\ tree \leftarrow a \text{ new decision tree with root test } attr \\ \text{for each value } v_i \text{ of } attr \text{ do} \\ exs \leftarrow \{e: e \in examples \text{ and } e.attr = v_i\} \\ subtree \leftarrow \text{DECISION-TREE-LEARNING}(exs, attributes - attr, examples) \\ \text{add a branch to } tree \text{ with label } (attr = v_i) \text{ and subtree } subtree \\ \text{return } tree
```

Figure 18.5 The decision-tree learning algorithm. The function IMPORTANCE is described in Section 18.3.4. The function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.

Induced decision tree

Induced decision tree

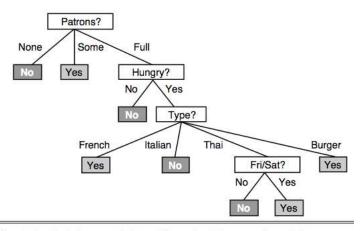


Figure 18.6 The decision tree induced from the 12-example training set.

Hand-designed vs. induced trees

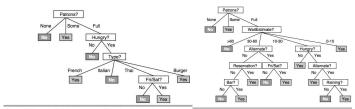


Figure 18.6 The decision tree induced from the 12-example training set.

Figure 18.2 A decision tree for deciding whether to wait for a table.

function DECISION-TREE-LEARNING(examples, attributes, parent_examples) **returns** a tree

```
if examples is empty then return PLURALITY-VALUE(parent_examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else attr \leftarrow \mathop{\mathrm{argmax}}_{a \ \in \ attributes} \text{ IMPORTANCE}(a, examples) \\ tree \leftarrow \text{ a new decision tree with root test } attr for each value v_i of attr do exs \leftarrow \{e : e \in examples \text{ and } e.attr = v_i\} \\ subtree \leftarrow \text{DECISION-TREE-LEARNING}(exs, attributes - attr, examples) \\ \text{add a branch to } tree \text{ with label} (attr = v_i) \text{ and subtree } subtree return tree
```

Figure 18.5 The decision-tree learning algorithm. The function IMPORTANCE is described in Section 18.3.4. The function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.

Entropy

$$H(V) = \sum_{i} P(v_i) \log_2 \frac{1}{P(v_i)}$$
$$= -\sum_{i} P(v_i) \log_2 P(v_i)$$

Entropy: Restaurant example

$$H(V) = \sum_{i} P(v_i) \log_2 \frac{1}{P(v_i)}$$
$$= -\sum_{i} P(v_i) \log_2 P(v_i)$$

$$H(Goal) = -(\frac{p}{p+n}\log_2\frac{p}{p+n} + \frac{n}{p+n}\log_2\frac{n}{p+n})$$

p is number of positive examples ("will wait"),n is number of negative examples ("will not wait")

$$H(Goal) = -\left(\frac{p}{p+n}\log_2\frac{p}{p+n} + \frac{n}{p+n}\log_2\frac{n}{p+n}\right)$$

$$= -\left(\frac{6}{6+6}\log_2\frac{6}{6+6} + \frac{6}{6+6}\log_2\frac{6}{6+6}\right)$$

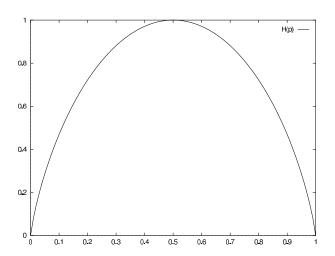
$$= -2\frac{6}{6+6}\log_2\frac{6}{6+6}$$

$$= \log_2 2$$

$$= 1$$

Plot of entropy

Plot of entropy



Notation

$$H(T(q)) = -q \log_2 q - (1-q) \log_2 (1-q)$$

Remainder = Remaining uncertainty

Remainder(A) =
$$\sum_{i=1}^{|v(A)|} \frac{p_i + n_i}{p + n} H(T(\frac{p_i}{p_i + n_i}))$$

 p_i is the number of positive examples that have attribute value v_i $(A = v_i)$ and n_i is the number of negative examples that have attribute value v_i $(A = v_i)$.

Information gain

Information gain

$$Gain(A) = H(T(\frac{p}{p+n})) - Remainder(A)$$

Information gain for Pt = Patrons and Tp = Type

$$\begin{aligned} \mathsf{Gain}(\mathsf{Tp}) &= 1 - [\frac{2}{12} H(T(\frac{1}{2})) + \frac{2}{12} H(T(\frac{1}{2})) + \frac{4}{12} H(T(\frac{2}{4})) + \frac{4}{12} H(T(\frac{2}{4}))] \\ &= 1 - [\frac{2}{12} + \frac{2}{12} + \frac{4}{12} + \frac{4}{12}] \\ &= 0 \text{ bits} \\ \mathsf{Gain}(\mathsf{Pt}) &= 1 - [\frac{2}{12} H(T(\frac{0}{2})) + \frac{4}{12} H(T(\frac{4}{4})) + \frac{6}{12} H(T(\frac{2}{6}))] \\ &= 1 - [0 + 0 + \frac{1}{2} H(T(\frac{1}{2}))] \end{aligned}$$

 \approx 0.541 bits

Entropy exercise (goal)

example	decision	type	day of week	colleague?
<i>x</i> ₁	yes	french	saturday	''let's stay''
<i>X</i> ₂	no	thai	friday	''let's go''
<i>X</i> 3	yes	burger	saturday	''let's stay''
X4	yes	thai	sunday	''let's stay''
<i>X</i> ₅	no	french	friday	''let's go''
<i>x</i> ₆	yes	italian	sunday	''let's stay''
X7	no	burger	friday	''let's go''
<i>X</i> 8	yes	thai	sunday	''let's stay''
<i>X</i> 9	no	burger	friday	"not sure"
X ₁₀	no	italian	friday	''not sure''
X ₁₁	no	thai	friday	"not sure"
X ₁₂	yes	burger	sunday	"not sure"

function DECISION-TREE-LEARNING(examples, attributes, parent_examples) **returns** a tree

```
if examples is empty then return PLURALITY-VALUE(parent_examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else attr \leftarrow \underset{a=0}{\operatorname{attributes}} \text{ IMPORTANCE}(a, examples) \\ tree \leftarrow \underset{a=0}{\operatorname{anew}} \underset{a=0}{\operatorname{attributes}} \text{ IMPORTANCE}(a, examples) \\ tree \leftarrow \underset{a=0}{\operatorname{anew}} \underset{a=0}{\operatorname{attributes}} \text{ and } e.attr \\ \text{for each value } v_i \text{ of } attr \text{ do} \\ exs \leftarrow \{e: e \in examples \text{ and } e.attr = v_i\} \\ subtree \leftarrow \underset{a=0}{\operatorname{DECISION-TREE-LEARNING}(exs, attributes - attr, examples)} \\ \text{add a branch to } tree \text{ with label } (attr = v_i) \text{ and subtree } subtree \\ \text{return } tree
```

Figure 18.5 The decision-tree learning algorithm. The function IMPORTANCE is described in Section 18.3.4. The function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.

Outline

Decision trees

2 NLTK

NLTK decision tree demo

- Introduction to decision trees
- (Almost) fully understand one complex machine learning model
- Basis for hands-on training and applying this model in next practical exercise
- Exam: questions testing basic understanding of decision trees, but no formulas