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IBM Watson approach to NLP

sequence model

in most cases: given an observation or evidence,
select the most likely sequence that caused the observation

We will only consider word sequences for now.

argmaxword-sequenceP(word-sequence|evidence)

= argmaxword-sequence
P(evidence|word-sequence)P(word-sequence)

P(evidence)

= argmaxword-sequence P(evidence|word-sequence) P(word-sequence)
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Noisy channel

Well-known examples of applications of noisy channel model?
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Noisy channel: Information theory / telecommunications

P(x) P(y |x) argmaxxP(y |x)P(x)

sender
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x
′
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Noisy channel: Speech recognition

P(x) P(y |x) argmaxxP(y |x)P(x)

speaker
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Noisy channel: Optical character recognition

P(x) P(y |x) argmaxxP(y |x)P(x)

MS Word

ascii/unicode
x

printer

black dots
on page

y

OCR model
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words
x
′

search system

Noisy channel model Machine translation Language models

Schütze: Machine Translation 10 / 49



Part-of-speech tagging

Given a sequence of words (a sentence), how do we compute
the corresponding (disambiguated) part-of-speech sequence?

Example:

Input: “the representative put chairs on the table”
Output: “AT NN VBD NNS IN AT NN”

t1,n = argmaxt1,nP(t1,n|w1,n) = argmaxt1,nP(w1,n|t1,n)t1,n)
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Noisy channel: Part-of-speech tagging

P(x) P(y |x) argmaxxP(y |x)P(x)

HMM

POS sequence
x

HMM

word sequence
y

POS tagging

POS sequence
x
′

NLP task
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Noisy channel: Part-of-speech tagging

the repr. put chairs on the table

t0 AT NN VBD NNS IN AT NNs s s s s s s

e e e e e e e
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IBM Watson approach to NLP

sequence model

in most cases: given an observation or evidence,
select the most likely sequence that caused the observation

We will only consider word sequences for now.
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Classical approach to speech recognition

argmaxword-sequenceP(word-sequence|evidence)

= argmaxword-sequence
P(evidence|word-sequence)P(word-sequence)

P(evidence)

= argmaxword-sequence P(evidence|word-sequence) P(word-sequence)

word sequence: sequence of words

evidence: acoustic signal

P(evidence|word-sequence): a model of how humans translate
a sequence of (written) words into acoustics
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Classical approach to optical character recognition

argmaxword-sequenceP(word-sequence|evidence)

= argmaxword-sequence
P(evidence|word-sequence)P(word-sequence)

P(evidence)

= argmaxword-sequence P(evidence|word-sequence) P(word-sequence)

word sequence: sequence of words

evidence: image

P(evidence|word-sequence): a model of how a machine (e.g.,
a desktop printer) translates a sequence of words into printed
letters/symbols
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Exercise: Noisy channel model for machine translation?

word sequence: sequence of words
evidence: acoustic signal
P(evidence|word-sequence): a model of how humans translate
a sequence of (written) words into acousticssp

ee
ch

P(x) P(y |x) argmaxxP(y |x)P(x)

speaker

thought
x

pronunciation

acoustic signal
y

comprehension

recognized
speech
x
′

hearer
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Classical approach to machine translation

(French→English)

argmaxword-sequenceP(word-sequence|evidence)

= argmaxword-sequence
P(evidence|word-sequence)P(word-sequence)

P(evidence)

= argmaxword-sequence P(evidence|word-sequence) P(word-sequence)

word sequence: sequence of English words

evidence: sequence of French words

P(evidence|word-sequence): a model of how humans translate
a sequence of English words into a sequence of French words

Noisy channel model Machine translation Language models

Schütze: Machine Translation 18 / 49



Noisy channel: Information theory / telecommunications
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Noisy channel: Speech recognition
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Noisy channel: Optical character recognition
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Noisy channel: French-to-English machine translation

P(x) P(y |x) argmaxxP(y |x)P(x)
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Noisy channel: French-to-English machine translation

P(x) P(y |x) argmaxxP(y |x)P(x)
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The two key components of the model

argmaxword-sequenceP(word-sequence|evidence)

= argmaxword-sequence
P(evidence|word-sequence)P(word-sequence)

P(evidence)

= argmaxword-sequence P(evidence|word-sequence) P(word-sequence)
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How to build a translation model

Find a parallel corpus – a body of text where each sentence is
available in two or more languages

IBM Watson used the Canadian Hansards, the proceedings of
the Canadian Parliament.

Compute a word alignment for the parallel corpus (next slide)

Estimate a translation model from the word alignment (that
is, the model that models how humans generate French
sentences from English sentences)
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Empty cept

Our model is a generative model: The French sentence is
generated based on the English sentence.

Every French word is “caused” by an English word.

causation = alignment

But many French words are not aligned, i.e., they have no
plausible English word they correspond to.

To cover these unaligned French words, we introduce the
“empty cept” e0.

The empty cept e0 is an artificial English word that all
unaligned French words are aligned with.

Now every French word is “caused” by an English word.
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Exercise: Estimating word translation probabilities

Estimate:
P(ei |nouvelles)
P(fj |fees)
P(fj |the)
P(fj |e0)
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“Linguistic” word/phrase alignment of a parallel corpus

Noisy channel model Machine translation Language models

Schütze: Machine Translation 29 / 49



Basic translation model

P(f |e) ∝

l∑

a1=0

· · ·

l∑

am=0

P(< a1, . . . , am >)

m∏

j=1

P(fj |eaj )

e: English sentence, ei : i
th word in e

l : length of English sentence
f : French sentence, fj : j

th word in f

m: length of French sentence
eaj is the English word that fj is aligned with – this assumes
that the alignment is a (total) function:
a : {1, 2, . . . ,m} 7→ {0, 1, . . . , l}
There is a special word e0, the empty cept, that all unaligned
French words are aligned to.
P(fj |eaj ) is the probability of eaj being translated as fj .
P(< a1, . . . , am >) is the probability of alignment
< a1, . . . , am >.
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Exercise: Estimating word translation probabilities
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Formalization of alignment

e0 e1 e2
empty cept they descended

f1 f2 f3
runter gingen sie

a1 a2 a3
0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
0 2 0
0 2 1
0 2 2

a1 a2 a3
1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2

a1 a2 a3
2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2
2 2 0
2 2 1
2 2 2
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Exercise

What’s bad about this model? What type of linguistic
phenomenon will not be translated correctly?
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What’s bad about this model

Collocations, noncompositional combinations: “piece of cake”

Assumption violated: Each English word generates German
translations independent of the other words.

Compounds: “Kirschkuchen” vs. “cherry pie”

Assumption violated: For each German/French word there is a
single English word reponsible for it.

Unlikely alignments: “siehst Du” vs. “(do) you see”

Assumption violated: The probability of a particular alignment
is independent of the words.
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What’s bad about this model (2)

Morphology: “Kind” – “Kindes”

Gender and case

Syntax: which types of differences between German syntax
and English syntax could be a problem?
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Google Translate
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The two key components of the model
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Noisy channel: French-to-English machine translation

P(x) P(y |x) argmaxxP(y |x)P(x)

speaker

English
x

E-to-F translator

French
y

F-to-E translator

English
x
′

hearer
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Why the language model is important

Classical example from speech recognition

The following two are almost indistinguishable acoustically.

“wreck a nice beach”

“recognize speech”

If we had only the translation model P(y |x),
then we would not be able to make a good decision.

We need the language model for this decision.

P(“wreck a nice beach”) ≪ P(“recognize speech”)

We’ll choose “recognize speech” based on this.
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Bigram language model

P(w1,2,...,n) =

n∏

i=1

P(wi |wi−1)

Key problem: How do we estimate the parameters?

P(wi |wi−1)?
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Maximum likelihood = Relative frequency

PML(w2|w1) =
C (w1w2)

C (w1)

where C (e) is the number of times the event e occurred in the
training set.

Example:

pML(be|would) =
C (would be)

C (would)
=

18454

83735
≈ 0.22
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Why maximum likelihood does not work

Suppose that “Dr.” and “Cooper” are frequent in our corpus.
Frequency of “Dr.” = 10000

But suppose that the sequence “Dr. Cooper” does not occur
in the corpus.

What is the maximum likelihood estimate of
P(Cooper|Dr.)?

PML(Cooper|Dr.) =
C (Dr. Cooper)

C (Dr.)
=

0

10000
= 0

This means that in machine translation, any English sentence
containing “Dr. Cooper” would be deemed impossible and
could not be output by the translator.

This problem is called sparseness.

Ideally, we would need knowledge about events and their
probability that never occurred in our training corpus.
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Laplace = Add-one smoothing

PL(w2|w1) =
C (w1w2) + 1

C (w1) + |V |

where C (e) is the number of times the event e occurred in the
training set, V is the vocabulary of the training set and wi ,j is the
sequence of words wi ,wi+1, . . . ,wj−1,wj .

Better estimator:

PL(Cooper|Dr.) =
0 + 1

10000 + 256873
≈ 0.0000037 > 0

So now our machine translation system has a chance of finding a
good English translation that contains the phrase “Dr. Cooper”.
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Exercise

the three women saw the small mountain behind the large
mountain

Compute maximum likelihood and laplace estimates for:
P(three|the) and P(saw|the)
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Besonders klausurrelevant

Noisy channel model

Translation models

Estimation of translation models

Language models

Estimation of language models
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Besonders klausurrelevant

P(e)

P(f |e)

empty cept

argmaxP(f |e)P(e)
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