Einführung in die Computerlinguistik Kontextfreie Grammatiken

Hinrich Schütze

Center for Information and Language Processing

2019-01-14

Die Grundfassung dieses Foliensatzes wurde von Prof. Dr. Stefan Evert erstellt. Fehler und Mängel sind ausschließlich meine Verantwortung.

Outline

Montextfreie Grammatiken

- 2 Top-down parsing
- CYK

Outline

1 Kontextfreie Grammatiken

- 2 Top-down parsing
- 3 CYK

Kontextfreie Grammatiken / Sprachen

- Mächtiger als reguläre Sprachen / Automaten
- Rekursive Strukturen
- Konstituentengrammatik

Defintion kontextfreie Grammatik (CFG)

Eine kontextfreie Grammatik G über dem Alphabet Σ ist ein Quadrupel $G = (V, \Sigma, P, S)$. Die Elemente von V heißen Variablen oder Nichtterminalsymbole, entsprechend werden die Zeichen aus Σ auch als Terminalsymbole bezeichnet. Wir nehmen stets $V \cap \Sigma = \emptyset$ an. üblicherweise verwenden wir für Terminalsymbole Kleinbuchstaben $a, b, c, \ldots \in \Sigma$ und für Variablen Großbuchstaben $A, B, C, \ldots \in V$. Zur Unterscheidung von Wörtern $u, v, w, \ldots \in \Sigma^*$ bezeichnen wir Zeichenketten, die sowohl Variablen als auch Terminalsymbole enthalten können, als Terme und verwenden dafür griechische Kleinbuchstaben $\alpha, \beta, \gamma, \ldots \in (V \cup \Sigma)^*$. $S \in V$ ist eine spezielle Variable, die Startsymbol genannt wird. $P \subseteq V \times (V \cup \Sigma)^*$ schließlich ist die Menge der Produktionen: jede Produktion ist von der Form $A \to \alpha$, wobei A eine Variable und α ein beliebiger Term ist.

Produktionen

Eine Produktion $A \to \alpha \in P$ wird auch als Regel bezeichnet, A als linke Seite und α als rechte Seite der Regel.

Zur Vereinfachung der Notation dürfen Regeln $A \to \alpha_1$, $A \to \alpha_2$, ..., $A \to \alpha_n$ mit identischer linken Seite zusammengefasst werden: $A \to \alpha_1 |\alpha_2| \dots |\alpha_n$.

Schütze: Kontextfreie Grammatiken

Ableitungsschritt

Ein Ableitungsschritt $\delta\Rightarrow_G\delta'$ überführt einen Term δ durch Ersetzung genau einer Variable in einen Term δ' . In der formalen Darstellung schreiben wir $\delta=\beta A\gamma$ und $\delta'=\beta \alpha\gamma$, wobei $A\in V$ die genannte Variable ist, die durch einen Term α ersetzt wird. Der Ableitungsschritt $\beta A\gamma\Rightarrow_G\beta\alpha\gamma$ ist zulässig, wenn es eine Produktion $A\to\alpha\in P$ gibt.

Ableitung

Eine Ableitung ist eine beliebige Folge von zulässigen Ableitungsschritten: $\alpha_1 \Rightarrow_G \alpha_2 \Rightarrow_G \ldots \Rightarrow_G \alpha_n$. Wir schreiben kurz $\alpha_1 \Rightarrow_G^* \alpha_n$ und sagen, dass α_n aus α_1 ableitbar ist. Der Index G kann dabei ausgelassen werden, sofern klar ist, bezüglich welcher Grammatik G die Ableitung durchgeführt wird.

Definition kontextfreie Sprache

Die von G beschriebene formale Sprache $\mathcal{L}[G]$ ist die Menge aller Wörter w, die aus dem Startsymbol ableitbar sind:

$$\mathcal{L}[G] := \{ w \in \Sigma^* \, | \, S \Rightarrow^* w \}.$$

Eine Sprache $L\subseteq \Sigma^*$ heißt kontextfrei, wenn sie durch eine kontextfreie Grammatik G beschrieben werden kann, d.h. wenn $L=\mathcal{L}\left[G\right]$ gilt.

Beispiel

Als Beispiel betrachten wir eine kontextfreie Grammatik G_1 für einfache arithmetische Ausdrücke über dem Alphabet $\Sigma_1 = \{0, 1, \dots, 9, +, *\}$. $G_1 = (V_1, \Sigma_1, P_1, S)$ ist folgendermaßen definiert:

$$V_1 := \{S, T\}$$
 $P_1 := \{S \to T, \ T \to T + T | T * T \ T \to 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \}.$

Die Variable T repräsentiert dabei jeweils einen arithmetischen Term. Das Wort w=3+5 gehört zu $\mathcal{L}\left[G_1\right]$, da es aus S ableitbar ist: $S\Rightarrow T\Rightarrow T+T\Rightarrow 3+T$, also kurz $S\Rightarrow^*3+5$.

Schütze: Kontextfreie Grammatiken

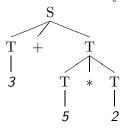
Ableitungsbaum für

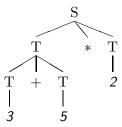
$$S \Rightarrow T \Rightarrow T + T \Rightarrow 3 + T \Rightarrow 3 + 5$$

Die Ableitung von w bezüglich der Grammatik G_1 ist nicht eindeutig: eine andere mögliche Ableitung ist $S\Rightarrow T\Rightarrow T+T\Rightarrow T+5\Rightarrow 3+5$. Beide Varianten führen jedoch auf denselben Ableitungsbaum.

Ambiguität

Ein Wort w kann bezüglich einer CFG G auch mehrere verschiedene Ableitungsbäume besitzen. Z.B. hat $w=3+5*2\in\mathcal{L}\left[G_1\right]$ die folgenden beiden Ableitungsbäume:





Ableitung = Analyse

Die beiden Ableitungsbäume weisen w unterschiedliche Struktur zu, was für Anwendungen von großer Bedeutung ist. Man bezeichnet den Ableitungsbaum daher auch als Analyse von w durch die Grammatik. (Man denke z.B. an ein Taschenrechnerprogramm, das arithmetische Ausdrücke anhand ihres Ableitungsbaums auswertet. In diesem Fall wäre die linke Analyse die gewünschte, da * stärker bindet als +). Eine Grammatik, in der es ein Wort w mit mehreren verschiedenen Ableitungsbäumen (bzw. Linksableitungen) gibt, heißt mehrdeutig / ambig.

Verbesserte Grammatik

Im obigen Beispiel wäre es wünschenswert, G_1 so abzuändern, dass w=3+5*2 nur noch eine Analyse besitzt (nämlich die durch den linken Baum dargestellte). Eine solche Grammatik ist $G_2=(V_2,\Sigma_1,P_1,S)$ mit

$$V_2 := \{S, P\}$$

$$P_2 := \{S \to S + S | P,$$

$$S \to 0|1|2|3|4|5|6|7|8|9,$$

$$P \to P * P,$$

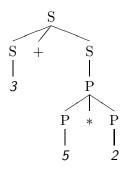
$$P \to 0|1|2|3|4|5|6|7|8|9\}.$$

Dabei stehen die Variablen S und P anschaulich für Summe und Produkt.

Schütze: Kontextfreie Grammatiken

Verbesserte Grammatik: Beispiel w = 3 + 5 * 2

Bezüglich G_2 besitzt w nur noch die folgende eindeutige Analyse:



Outline

1 Kontextfreie Grammatiken

- 2 Top-down parsing
- CYK

cfgtopdown.odp

Outline

Montextfreie Grammatiken

- 2 Top-down parsing
- 3 CYK

cyk.odp

cyk,2009.odp

time,flies,cyk.pdf

Besonders klausurrelevant

- Formale Definition CFG: Terminale, Variablen, Startsymbol, Produktionen
- CYK
- Ableitungsbäume