
Transformer

The Decoder

Learning goals
Understand Masked
Self-Attention and the role of
causality in decoding

Understand the connection
between the encoder and the
decoder



ACKNOWLEDGMENTS

This presentation is based on slides originally authored by:

Ben Roth
Christian Heumann
Goran Glavas
Ivan Habernal
Leonie Weissweiler
Matthias Assenmacher
Nina Poerner

https://slds-lmu.github.io/dl4nlp/

© Transformer – 1 / 10

https://slds-lmu.github.io/dl4nlp/


RNNS FOR AUTOREGRESSIVE LM & DECODING

In autoregressive language modeling, or in the decoder of a
sequence-to-sequence model, the task is to always predict the
next word

In an RNN, a given state ~h(j) depends on past inputs x(1) . . . x(j)

Thus, the RNN is unable to “cheat”:

~h(0) ~h(1)

~̂y (1)

NLL

~x(1)

~h(2)

~̂y (2)

NLL

~x(2)

~h(3)

~̂y (3)

NLL

~x(3)

~h(4)

~̂y (4)

NLL

~x(4)

~h(5)

~̂y (5)

NLL

~x(5)

BOS a great book !

a great book ! EOS

© Transformer – 2 / 10



SELF-ATTENTION FOR AR LM & DECODING

With attention, all ~oj depend on all ~vj′ (and by extension, all ~xj′).

This means that the model can easily cheat by looking at future
words (red connections)

~o1

~̂y1

NLL

~v1

~x1

~o2

~̂y2

NLL

~v2

~x2

~o3

~̂y3

NLL

~v3

~x3

~o4

~̂y4

NLL

~v4

~x4

~o5

~̂y5

NLL

~v5

~x5

BOS a great book !

a great book ! EOS

© Transformer – 3 / 10



MASKED SELF-ATTENTION

So when we use self-attention for language modeling or in a
sequence-to-sequence decoder, we have to prevent ~oj from
attending to any ~vj′ where j ′ > j .

Question: How can we do that?

Remember:

~oj =
J∑

j′=1

αj,j′~vj′

αj,j′ =
exp(ej,j′)∑J

j′′=1 exp(ej,j′′)

By hardcoding ej,j′ = −∞ when j ′ > j (in practice, “∞” is just
a large constant)
That way, exp(ej,j′) = αj,j′ = 0, so ~vj′ has no impact on ~oj

© Transformer – 4 / 10



PARALLELIZED MASKED SELF-ATTENTION

Step 1: Calculate ~E like we usually would

Step 1B:

~Emasked = ~E � ~M +∞~M −∞; mj,j′ =

{
1 if j ′ ≤ j

0 otherwise

Example:

~E =

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

 ; ~M =

1 0 0
1 1 0
1 1 1


~Emasked =

e1,1 −∞ −∞
e2,1 e2,2 −∞
e3,1 e3,2 e3,3

 ; ~Amasked =

 1 0 0
α2,1 α2,2 0
α3,1 α3,2 α3,3


~o1 = ~v1; ~o2 = α2,1~v1 + α2,2~v2; ~o3 = α3,1~v1 + α3,2~v2 + α3,3~v3

© Transformer – 5 / 10



AR TRANSFORMER AT INFERENCE TIME

During training (targets known): Use parallelized masked attention

At inference time (targets unknown): Decode prediction in a loop

Slower, but at least we don’t have to worry about masking anymore

~o1

~̂y1

~v1

~x1

~o2

~̂y2

~v2

~x2

~o3

~̂y3

~v3

~x3

~o4

~̂y4

~v4

~x4

~o5

~̂y5

~v5

~x5

[?] [?] [?] [?]BOS

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

© Transformer – 6 / 10



ADD. SUBTLETIES: RESIDUAL CONNECTIONS

Let F be a function with parameters θ

F with a residual connection:

F ′(~X ; θ) = F(~X ; θ) + ~X

Fθ

F ′(~X ; θ)

+

~X

Benefits: Information retention (we add to ~X but don’t replace it)

© Transformer – 7 / 10



ADD. SUBTLETIES: LAYER NORMALIZATION

Let θ = {~γ ∈ Rd , ~β ∈ Rd} be trainable parameters

Let ~h ∈ Rd be an output vector of some layer (e.g., an ~oj vector
from an attention layer)

Then layer normalization calculates:

~γ �
~h − µ
σ

+ ~β

where µ, σ are mean and standard deviation over the dimensions
of ~h:

µ =
1
d

d∑
i=1

hi ; σ =

√√√√ 1
d

d∑
i=1

(hi − µ)2

Benefits: Allows us to normalize vectors after every layer; helps
against exploding activations on the forward pass

In the Transformer, layer normalization is applied position-wise,
i.e., every ~oj is normalized independently

© Transformer – 8 / 10



ENCODER-DECODER ATTENTION

Open question: How do we connect encoder and decoder?

Construction of one decoder block:

1 Masked (Multi-Head) Attention layer (only target sequence)
2 "Ordinary" (Multi-Head) Attention layer

Queries from the previous decoder layer
Keys, Values from the encoder output

3 Feed-Forward layer (w/ residual connections & layer norm)

→ Allows the decoder to attend to all tokens from the input sequences
(cf. Bahdanau et al. (2014) for RNNs)

© Transformer – 9 / 10



THE TRANSFORMER ARCHITECTURE

en
co

de
r decoder

X (source) Y (target)

NLL

(For simpler problems (e.g.,
classification, tagging),
you would simply use
the encoder.)

Figure from Vaswani et al. 2017: Attention is all you need

© Transformer – 10 / 10


