
Transformer

The Encoder

Learning goals
Understand Self-Attention and
the role of position embeddings

Understand all the subtleties of
parallelized mult-head attention

ACKNOWLEDGMENTS

This presentation is based on slides originally authored by:

Ben Roth
Christian Heumann
Goran Glavas
Ivan Habernal
Leonie Weissweiler
Matthias Assenmacher
Nina Poerner

https://slds-lmu.github.io/dl4nlp/

© Transformer – 1 / 25

https://slds-lmu.github.io/dl4nlp/

THE TRANSFORMER ARCHITECTURE

en
co

de
r decoder

X (source) Y (target)

NLL

(For simpler problems (e.g.,
classification, tagging),
you would simply use
the encoder.)

Figure from Vaswani et al. 2017: Attention is all you need

© Transformer – 2 / 25

ATTENTION IN THE TRANSFORMER

We can use attention on many different “things”, including:

The pixels of images
The nodes of knowledge graphs
The words of a vocabulary

Here, we focus on scenarios where the query, key and value
vectors represent tokens (e.g., words, characters, etc.) in
sequences (e.g., sentences, paragraphs, etc.).

© Transformer – 3 / 25

ATTENTION IN THE TRANSFORMER

Cross-attention:

Let X = (x1 . . . xJx),Y = (y1 . . . yJy) be two sequences (e.g.,
source and target in a sequence-to-sequence problem)

The query vectors represent tokens in Y and the key/value vectors
represent tokens in X (“Y attends to X ”)

Self-attention:

There is only one sequence X = (x1 . . . xJ)

The query, key and value vectors represent tokens in X (“X
attends to itself”)

© Transformer – 4 / 25

CROSS-ATTENTION (1)

Here, we describe cross-attention. Self-attention can easily be
derived by assuming ~X = ~Y .

Let ~X ∈ RJx×dx , ~Y ∈ RJy×dy be representations of X ,Y (e.g.,
stacked word embeddings, or the outputs of a previous layer)

Let θ = { ~W (q) ∈ Rdy×dq , ~W (k) ∈ Rdx×dk , ~W (v) ∈ Rdx×dv} be
trainable weight matrices

We transform ~Y into a matrix of query vectors:

~Q = ~Y ~W (q)

We transform ~X into matrices of key and value vectors:

~K = ~X ~W (k); ~V = ~X ~W (v)

© Transformer – 5 / 25

CROSS-ATTENTION (2)

To calculate the e scores (step 1 of the basic recipe), Vaswani et
al. use a parameter-less scaled dot product instead of Bahdanau’s
complicated FFN:

ej,j′ = a(~qj ,~kj′) =
~qT

j
~kj′√
dk

Note: This requires that dq = dk

Attention weights and outputs are defined like before (steps 2 and
3 of the basic recipe):

αj,j′ =
exp(ej,j′)∑Jx

j′′=1 exp(ej,j′′)

~oj =
Jx∑

j′=1

αj,j′~vj′

© Transformer – 6 / 25

CROSS-ATTENTION (3)

~x1

~k1

~v1

~x2

~k2

~v2

~x3

~k3

~v3

~y1

~q1

~o1

α1,1
α1,2
α1,3

~y2

~q2

~o2

α2,1
α2,2
α2,3

Cross-attention

© Transformer – 7 / 25

CROSS-ATTENTION (4)

~x1

~k1

~v1

~x2

~k2

~v2

~x3

~k3

~v3

~q1

~o1

α1,1
α1,2
α1,3

~q2

~o2

α2,1
α2,2
α2,3

~q3

~o3

α3,1
α3,2
α3,3

Self-attention

© Transformer – 8 / 25

SELF-ATTENTION FORMALIZED

Let ~X ∈ RJx×dx be a representation of X (e.g., stacked word
embeddings, or the outputs of a previous layer)

Let θ = { ~W (q) ∈ Rdx×dq , ~W (k) ∈ Rdx×dk , ~W (v) ∈ Rdx×dv} be
trainable weight matrices

We transform ~X into a matrix of query vectors:

~Q = ~X ~W (q)

And we transform ~X into matrices of key and value vectors:

~K = ~X ~W (k); ~V = ~X ~W (v)

© Transformer – 9 / 25

CAN SELF-ATTENTION MODEL WORD ORDER?

Our model consists of a self-attention layer on top of a simple word
embedding lookup layer. (For simplicity, we only consider one
head, but this applies to multi-head attention as well.)

Let X (1), X (2) be two sentences of the same length J, which
contain the same words in a different order

Example: “john loves mary” vs. “mary loves john”

© Transformer – 10 / 25

CAN SELF-ATTENTION MODEL WORD ORDER?

Definition of ~oj :

~oj =
J∑

j′=1

αj,j′~vj′

Since addition is commutative, and the permutation is bijective, it is
sufficient to show that:

∀j∈{1,...,J},j′∈{1,...,J}α
(1)
j,j′~v

(1)
j′ = α

(2)
gj ,gj′

~v (2)
gj′

Step 1: Let’s show that ∀j~v
(1)
j = ~v (2)

gj

Definition of ~vj :
~vj = ~W (v)T~xj

Then:

~x(1)
j = ~x(2)

gj =⇒ ~W (v)T~x(1)
j = ~W (v)T~x(2)

gj =⇒ ~v (1)
j = ~v (2)

gj

© Transformer – 11 / 25

CAN SELF-ATTENTION MODEL WORD ORDER?

Step 2: Let’s show that ∀j∈{1,...,J},j′∈{1,...,J}α
(1)
j,j′ = α

(2)
gj ,gj′

Definition of αj,j′ :

αj,j′ =
exp(ej,j′)∑J

j′′=1 exp(ej,j′′)

Since the sum in the denominator is commutative, and the
permutation is bijective, it is sufficient to show that

∀j∈{1,...,J},j′∈{1,...,J}e
(1)
j,j′ = e(2)

gj ,gj′

© Transformer – 12 / 25

CAN SELF-ATTENTION MODEL WORD ORDER?

Definition of ej,j′ :

ej,j′ =
1√
dk
~qT

j
~kj′ =

1√
dk

(~W (q)T~xj)
T (~W (k)T~xj′)

Then:

~x(1)
j = ~x(2)

gj ∧ ~x
(1)
j′ = ~x(2)

gj′

=⇒ ~W (q)T~x(1)
j = ~W (q)T~x(2)

gj ∧ ~W
(k)T~x(1)

j′ = ~W (k)T~x(2)
gj′

=⇒ ~q(1)
j = ~q(2)

gj ∧ ~k
(1)
j′ = ~k (2)

gj′

=⇒ ~q(1)T
j

~k (1)
j′ = ~q(2)T

gj
~k (2)

gj′

=⇒ 1√
dk
~q(1)T

j
~k (1)

j′ =
1√
dk
~q(2)T

gj
~k (2)

gj′

=⇒ e(1)
j,j′ = e(2)

gj ,gj′

© Transformer – 13 / 25

CAN SELF-ATTENTION MODEL WORD ORDER?

So, ∀j~o
(1)
j = ~o(2)

gj

In other words: The representation of mary is identical to that of
mary, and the representation of john is identical to that of john

Question: Can the other layers in the Transformer architecture
(feed-forward net, layer normalization) help with the problem?

No, because they apply the same function to all positions.

Question: Would it help to apply more self-attention layers?

No. Since the representations of identical words are still
identical in ~O, the next self-attention layer will have the same
problem.

So... does that mean the Transformer is unusable?

Luckily not. We just need to ensure that input embeddings of
identical words at different positions are not identical.

© Transformer – 14 / 25

POSITION EMBEDDINGS

Add to every input word embedding a position embedding ~p ∈ Rd :

Input embedding of word “mary” in position j : ~xj = ~wI(mary) + pj

~wI(mary) + ~pj 6= ~wI(mary) + ~pj′ if j 6= j ′

Option 1 (Vaswani et al., 2017): Sinusoidal position embeddings
(deterministic):

pj,i =

sin
(j

10000
i
d

)
if i is even

cos
(j

10000
i−1

d

)
if i is odd

Option 2 (Devlin et al., 2018):
Trainable position embeddings: ~P ∈ RJmax×d

Disadvantage:
Cannot deal with sentences that are longer than Jmax

© Transformer – 15 / 25

PARALLELIZED ATTENTION

We want to apply our attention recipe to every query vector ~qj

We could simply loop over all time steps 1 ≤ j ≤ Jx (or Jy) and
calculate each ~oj independently.

Then stack all ~oj into an output matrix ~O ∈ RJx×dv (or RJy×dv)

But a loop does not use the GPU’s capacity for parallelization

So it might be unnecessarily slow

© Transformer – 16 / 25

PARALLELIZED SELF-ATTENTION

Do some inputs (e.g., ~qj) depend on previous outputs (e.g., ~oj−1)?
If not, we can parallelize the loop into a single function:

~O = Fattn(~X , ~X ; θ)

Attention in Transformers is usually parallelizable, unless we are
doing autoregressive inference (more on that later).

By the way: The Bahdanau model is not parallelizable in this way,
because si (a.k.a. the query of the i + 1’st step) depends on ci

(a.k.a. the attention output of the i ’th step), see last lecture:

© Transformer – 17 / 25

PARALLELIZED SELF-ATTENTION

Step 1: The parallel application of the scaled dot product to all
query-key pairs can be written as:

~E =
~Q~K T
√

dk
; ~E ∈ RJx×Jx

↓
queries
↓

→keys→ e1,1 . . . e1,Jx
...

. . .
...

eJx ,1 . . . eJx ,Jx

 =
1√
dk

− ~q1 −
...

− ~qJx −


 | |
~k1 . . . ~kJx

| |



© Transformer – 18 / 25

PARALLELIZED SCALED DOT PRODUCT
SELF-ATTENTION

Step 2: Softmax with normalization over the second axis (key
axis):

αj,j′ =
exp(ej,j′)∑Jx

j′′=1 exp(ej,j′′)

Let’s call this new normalized matrix ~A ∈ (0, 1)Jx×Jx

The rows of ~A, denoted ~αj , are probability distributions (one ~αj per
~qj)

© Transformer – 19 / 25

PARALLELIZED SCALED DOT PRODUCT
SELF-ATTENTION

Step 3: Weighted sum

~O = ~A~V ; ~O ∈ RJx×dv

↓
queries
↓

→dv (value dims)→ o1,1 . . . o1,dv
...

. . .
...

oJx ,1 . . . oJx ,dv

 =

− α1 −
...

− αJx −


 | |
~v:,1 . . . ~v:,dv

| |



© Transformer – 20 / 25

... AS A ONE-LINER

~O = Fattn(~X , ~X ; θ) = softmax
((~X ~W (q))(~X ~W (k))T

√
dk

)
(~X ~W (v))

GPUs like matrix multiplications
→ usually a lot faster than RNN!
But: The memory requirements of ~E and ~A are O(J2

x)

A length up to about 500 is usually ok on a medium-sized
GPU (and most sentences are shorter than that anyway).
But when we consider inputs that span several sentences
(e.g., paragraphs or whole documents), we need tricks to
reduce memory. These are beyond the scope of this lecture.

© Transformer – 21 / 25

ADD-ON: CHANGES FOR CROSS ATTENTION

Step 1: Scaled dot-product

~E =
~Q~K T
√

dk
; ~E ∈ RJy×Jx

Step 2: Softmax

αj,j′ =
exp(ej,j′)∑Jx

j′′=1 exp(ej,j′′)

Step 3: Output
~O = ~A~V ; ~O ∈ RJy×dv

As one-liner:

~O = Fattn(~X , ~Y ; θ) = softmax
((~Y ~W (q))(~X ~W (k))T

√
dk

)
(~X ~W (v))

© Transformer – 22 / 25

MULTI-LAYER ATTENTION

Sequential application of several attention layers, with separate
parameters {θ(1) . . . θ(N)}
In Transformer: sequential application of Transformer blocks

There are some additional position-wise layers inside the
Transformer block, i.e., ~O(n) undergoes some additional
transformations before becoming the input to the next Transformer
block n + 1

© Transformer – 23 / 25

MULTI-HEAD ATTENTION

Application of several attention layers (“heads”) in parallel

M sets of parameters {θ(1), . . . , θ(M)}, with
θ(m) = { ~W (m,q), ~W (m,k), ~W (m,v)}
For every head, compute in parallel:

~O(m) = Fattn(~X , ~Y ; θ(m))

Concatenate all ~O(m) along their last axis; then down-project the
concatenation with an additional parameter matrix
~W (o) ∈ RMdv×dv :

~O = [~O(1); . . . ; ~O(M)] ~W (o)

© Transformer – 24 / 25

MULTI-HEAD ATTENTION

Conceptually, multi-head attention is to single-head attention like a
filter bank is to a single filter (Lecture on CNNs)

Division of labor: different heads model different kinds of
inter-word relationships

Clark et al. (2018): What Does BERT Look At? An Analysis of BERT’s Attention

© Transformer – 25 / 25

