Transformer

The Encoder

Learning goals

- Understand Self-Attention and the role of position embeddings
- Understand all the subtleties of parallelized mult-head attention

ACKNOWLEDGMENTS

- This presentation is based on slides originally authored by:
- Ben Roth
- Christian Heumann
- Goran Glavas
- Ivan Habernal
- Leonie Weissweiler
- Matthias Assenmacher
- Nina Poerner
- https://slds-lmu.github.io/dl4nlp/

THE TRANSFORMER ARCHITECTURE

(For simpler problems (e.g., classification, tagging), you would simply use the encoder.)

[^0]
ATTENTION IN THE TRANSFORMER

- We can use attention on many different "things", including:
- The pixels of images
- The nodes of knowledge graphs
- The words of a vocabulary
- Here, we focus on scenarios where the query, key and value vectors represent tokens (e.g., words, characters, etc.) in sequences (e.g., sentences, paragraphs, etc.).

ATTENTION IN THE TRANSFORMER

Cross-attention:

- Let $X=\left(x_{1} \ldots x_{J_{x}}\right), Y=\left(y_{1} \ldots y_{J_{y}}\right)$ be two sequences (e.g., source and target in a sequence-to-sequence problem)
- The query vectors represent tokens in Y and the key/value vectors represent tokens in X (" Y attends to X ")

Self-attention:

- There is only one sequence $X=\left(x_{1} \ldots x_{J}\right)$
- The query, key and value vectors represent tokens in X (" X attends to itself")

CROSS-ATTENTION (1)

- Here, we describe cross-attention. Self-attention can easily be derived by assuming $\vec{X}=\vec{Y}$.
- Let $\vec{X} \in \mathbb{R}^{J_{x} \times d_{x}}, \vec{Y} \in \mathbb{R}^{J_{y} \times d_{y}}$ be representations of X, Y (e.g., stacked word embeddings, or the outputs of a previous layer)
- Let $\theta=\left\{\vec{W}^{(q)} \in \mathbb{R}^{d_{y} \times d_{q}}, \vec{W}^{(k)} \in \mathbb{R}^{d_{x} \times d_{k}}, \vec{W}^{(v)} \in \mathbb{R}^{d_{x} \times d_{v}}\right\}$ be trainable weight matrices
- We transform \vec{Y} into a matrix of query vectors:

$$
\vec{Q}=\vec{Y} \vec{W}^{(q)}
$$

- We transform \vec{X} into matrices of key and value vectors:

$$
\vec{K}=\vec{X} \vec{W}^{(k)} ; \quad \vec{V}=\vec{X} \vec{W}^{(v)}
$$

CROSS-ATTENTION (2)

- To calculate the e scores (step 1 of the basic recipe), Vaswani et al. use a parameter-less scaled dot product instead of Bahdanau's complicated FFN:

$$
e_{j, j^{\prime}}=a\left(\vec{q}_{j}, \vec{k}_{j^{\prime}}\right)=\frac{\vec{q}_{j}^{T} \vec{k}_{j^{\prime}}}{\sqrt{d_{k}}}
$$

- Note: This requires that $d_{q}=d_{k}$
- Attention weights and outputs are defined like before (steps 2 and 3 of the basic recipe):

$$
\begin{aligned}
\alpha_{j, j^{\prime}} & =\frac{\exp \left(e_{j, j^{\prime}}\right)}{\sum_{j^{\prime \prime}=1}^{J_{x}} \exp \left(e_{j, j^{\prime \prime}}\right)} \\
\vec{o}_{j} & =\sum_{j^{\prime}=1}^{J_{x}} \alpha_{j, j^{j^{\prime}}} \vec{v}_{j^{\prime}}
\end{aligned}
$$

CROSS-ATTENTION (3)

CROSS-ATTENTION (4)

Self-attention

- Let $\vec{X} \in \mathbb{R}^{J_{x} \times d_{x}}$ be a representation of X (e.g., stacked word embeddings, or the outputs of a previous layer)
- Let $\theta=\left\{\vec{W}^{(q)} \in \mathbb{R}^{d_{x} \times d_{q}}, \vec{W}^{(k)} \in \mathbb{R}^{d_{x} \times d_{k}}, \vec{W}^{(v)} \in \mathbb{R}^{d_{x} \times d_{v}}\right\}$ be trainable weight matrices
- We transform \vec{X} into a matrix of query vectors:

$$
\vec{Q}=\vec{X} \vec{W}^{(q)}
$$

- And we transform \vec{X} into matrices of key and value vectors:

$$
\vec{K}=\vec{X} \vec{W}^{(k)} ; \quad \vec{V}=\vec{X} \vec{W}^{(v)}
$$

CAN SELF-ATTENTION MODEL WORD ORDER?

- Our model consists of a self-attention layer on top of a simple word embedding lookup layer. (For simplicity, we only consider one head, but this applies to multi-head attention as well.)
- Let $X^{(1)}, X^{(2)}$ be two sentences of the same length J, which contain the same words in a different order
- Example: "john loves mary" vs. "mary loves john"

CAN SELF-ATTENTION MODEL WORD ORDER?

- Definition of \vec{o}_{j} :

$$
\vec{o}_{j}=\sum_{j^{\prime}=1}^{J} \alpha_{j, j^{\prime}} \vec{v}_{j^{\prime}}
$$

- Since addition is commutative, and the permutation is bijective, it is sufficient to show that:

$$
\forall_{j \in\{1, \ldots, J\}, j^{\prime} \in\{1, \ldots, J\}} \alpha_{j, j^{\prime}}^{(1)} \vec{j}_{j^{\prime}}^{(1)}=\alpha_{g_{j}, g_{j}}^{(2)} \vec{v}_{g_{j^{\prime}}}^{(2)}
$$

- Step 1: Let's show that $\forall_{j} \vec{v}_{j}^{(1)}=\vec{v}_{g_{j}}^{(2)}$
- Definition of \vec{v}_{j} :

$$
\vec{v}_{j}=\vec{W}^{(v) T} \vec{x}_{j}
$$

- Then:

$$
\vec{x}_{j}^{(1)}=\vec{x}_{g_{j}}^{(2)} \Longrightarrow \vec{W}^{(v) T} \vec{x}_{j}^{(1)}=\vec{W}^{(v) T} \vec{x}_{g_{j}}^{(2)} \Longrightarrow \vec{v}_{j}^{(1)}=\vec{v}_{g_{j}}^{(2)}
$$

- Step 2: Let's show that $\forall_{j \in\{1, \ldots, J\}, j^{\prime} \in\{1, \ldots, J\}} \alpha_{j, j^{\prime}}^{(1)}=\alpha_{g_{j}, \mathcal{G}_{j^{\prime}}}^{(2)}$
- Definition of $\alpha_{j, j^{\prime}}$:

$$
\alpha_{j, j^{\prime}}=\frac{\exp \left(e_{j, j^{\prime}}\right)}{\sum_{j^{\prime \prime}=1}^{J} \exp \left(e_{j, j^{\prime \prime}}\right)}
$$

- Since the sum in the denominator is commutative, and the permutation is bijective, it is sufficient to show that

$$
\forall_{j \in\{1, \ldots, J\}, j^{\prime} \in\{1, \ldots, J\}} e_{j, j^{\prime}}^{(1)}=e_{g_{j}, g_{j^{\prime}}}^{(2)}
$$

CAN SELF-ATTENTION MODEL WORD ORDER?

- Definition of $e_{j, j^{\prime}}$:

$$
e_{j, j^{\prime}}=\frac{1}{\sqrt{d_{k}}} \vec{a}_{j}^{T} \vec{k}_{j^{\prime}}=\frac{1}{\sqrt{d_{k}}}\left(\vec{W}^{(q) T} \vec{x}_{j}\right)^{T}\left(\vec{W}^{(k) T} \vec{x}_{j^{\prime}}\right)
$$

- Then:

$$
\begin{aligned}
& \vec{x}_{j}^{(1)}=\vec{x}_{g_{j}}^{(2)} \wedge \vec{x}_{j^{\prime}}^{(1)}=\vec{x}_{g_{j^{\prime}}}^{(2)} \\
\Longrightarrow & \vec{W}^{(q) T} \vec{x}_{j}^{(1)}=\vec{W}^{(q) T} \vec{x}_{g_{j}}^{(2)} \wedge \vec{W}^{(k) T} \vec{x}_{j^{\prime}}^{(1)}=\vec{W}^{(k) T} \vec{x}_{g_{j^{\prime}}}^{(2)} \\
\Longrightarrow & \vec{q}_{j}^{(1)}=\vec{q}_{g_{j}}^{(2)} \wedge \vec{k}_{j^{\prime}}^{(1)}=\vec{k}_{g_{j^{\prime}}}^{(2)} \\
\Longrightarrow & \vec{q}_{j}^{(1) T} \vec{k}_{j^{\prime}}^{(1)}=\vec{q}_{g_{j} T}^{(2) T} \vec{k}_{g_{j^{\prime}}}^{(2)} \\
\Longrightarrow & \frac{1}{\sqrt{d_{k}}} \vec{q}_{j}^{(1) T} \vec{k}_{j^{\prime}}^{(1)}=\frac{1}{\sqrt{d_{k}}} \vec{q}_{g_{j}}^{(2) T} \vec{k}_{g_{j^{\prime}}}^{(2)} \\
\Longrightarrow & e_{j, j^{\prime}}^{(1)}=e_{g_{j}, g_{j^{\prime}}}^{(2)}
\end{aligned}
$$

CAN SELF-ATTENTION MODEL WORD ORDER?

- So, $\forall_{j} \vec{o}_{j}^{(1)}=\vec{o}_{g_{j}}^{(2)}$
- In other words: The representation of mary is identical to that of mary, and the representation of john is identical to that of john
- Question: Can the other layers in the Transformer architecture (feed-forward net, layer normalization) help with the problem?
- No, because they apply the same function to all positions.
- Question: Would it help to apply more self-attention layers?
- No. Since the representations of identical words are still identical in \vec{O}, the next self-attention layer will have the same problem.
- So... does that mean the Transformer is unusable?
- Luckily not. We just need to ensure that input embeddings of identical words at different positions are not identical.

POSITION EMBEDDINGS

- Add to every input word embedding a position embedding $\vec{p} \in \mathbb{R}^{d}$:
- Input embedding of word "mary" in position $j: \vec{x}_{j}=\vec{W}_{\mathcal{I}(\text { mary })}+\mathbf{p}_{j}$

$$
\vec{w}_{\mathcal{I}(\text { mary })}+\vec{p}_{j} \neq \vec{w}_{\mathcal{I}(\text { mary })}+\vec{p}_{j^{\prime}} \text { if } j \neq j^{\prime}
$$

- Option 1 (Vaswani et al., 2017): Sinusoidal position embeddings (deterministic):

$$
p_{j, i}= \begin{cases}\sin \left(\frac{j}{10000^{\frac{j}{d}}}\right) & \text { if } i \text { is even } \\ \cos \left(\frac{j}{10000^{\frac{i-1}{d}}}\right) & \text { if } i \text { is odd }\end{cases}
$$

- Option 2 (Devlin et al., 2018):

Trainable position embeddings: $\vec{P} \in \mathbb{R}^{J^{\max } \times d}$

- Disadvantage:

Cannot deal with sentences that are longer than $J^{\max }$

PARALLELIZED ATTENTION

- We want to apply our attention recipe to every query vector \vec{q}_{j}
- We could simply loop over all time steps $1 \leq j \leq J_{x}$ (or J_{y}) and calculate each \vec{o}_{j} independently.
- Then stack all \vec{o}_{j} into an output matrix $\vec{O} \in \mathbb{R}^{J_{x} \times d_{v}}$ (or $\mathbb{R}^{J_{y} \times d_{v}}$)
- But a loop does not use the GPU's capacity for parallelization
- So it might be unnecessarily slow

PARALLELIZED SELF-ATTENTION

- Do some inputs (e.g., \vec{q}_{j}) depend on previous outputs (e.g., \vec{o}_{j-1})? If not, we can parallelize the loop into a single function:

$$
\vec{O}=\mathcal{F}^{\operatorname{attn}}(\vec{X}, \vec{X} ; \theta)
$$

- Attention in Transformers is usually parallelizable, unless we are doing autoregressive inference (more on that later).
- By the way: The Bahdanau model is not parallelizable in this way, because s_{i} (a.k.a. the query of the $i+1$ 'st step) depends on c_{i} (a.k.a. the attention output of the i 'th step), see last lecture:

The hidden state s_{i} of the decoder given the annotations from the encoder is computed by

$$
s_{i}=\left(1-z_{i}\right) \circ s_{i-1}+z_{i} \circ \tilde{s}_{i},
$$

where

$$
\begin{aligned}
\tilde{s}_{i} & =\tanh \left(W E y_{i-1}+U\left[r_{i} \circ s_{i-1}\right]+C c_{i}\right) \\
z_{i} & =\sigma\left(W_{z} E y_{i-1}+U_{z} s_{i-1}+C_{z} c_{i}\right) \\
r_{i} & =\sigma\left(W_{r} E y_{i-1}+U_{r} s_{i-1}+C_{r} c_{i}\right)
\end{aligned}
$$

- Step 1: The parallel application of the scaled dot product to all query-key pairs can be written as:

$$
\vec{E}=\frac{\vec{Q} \vec{K}^{T}}{\sqrt{d_{k}}} ; \quad \vec{E} \in \mathbb{R}^{J_{x} \times J_{x}}
$$

$$
\underset{\underset{\text { queries }}{\downarrow}}{\downarrow}\left[\begin{array}{ccc}
e_{1,1} \rightarrow \text { keys } \rightarrow \\
\vdots & \ldots & e_{1, J_{x}} \\
e_{J_{x}, 1} & \ldots & \vdots \\
e_{J_{x}, J_{x}}
\end{array}\right]=\frac{1}{\sqrt{d_{k}}}\left[\begin{array}{ccc}
- & \vec{q}_{1} & - \\
& \vdots & \\
- & \vec{q}_{J_{x}} & -
\end{array}\right]\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{k}_{1} & \ldots & \vec{k}_{J_{x}} \\
\mid & & \mid
\end{array}\right]
$$

PARALLELIZED SCALED DOT PRODUCT SELF-ATTENTION

- Step 2: Softmax with normalization over the second axis (key axis):

$$
\alpha_{j, j^{\prime}}=\frac{\exp \left(e_{j, j^{\prime}}\right)}{\sum_{j^{\prime \prime}=1}^{J_{x}} \exp \left(e_{j, j^{\prime \prime}}\right)}
$$

- Let's call this new normalized matrix $\vec{A} \in(0,1)^{J_{x} \times J_{x}}$
- The rows of \vec{A}, denoted $\vec{\alpha}_{j}$, are probability distributions (one $\vec{\alpha}_{j}$ per \vec{q}_{j})

PARALLELIZED SCALED DOT PRODUCT SELF-ATTENTION

- Step 3: Weighted sum

$$
\vec{O}=\vec{A} \vec{V} ; \vec{O} \in \mathbb{R}^{J_{x} \times d_{v}}
$$

$$
\underset{\underset{\text { queries }}{\downarrow}}{\downarrow}\left[\begin{array}{ccc}
\rightarrow d_{v} \text { (value dims) } \rightarrow \\
o_{1,1} & \ldots & o_{1, d_{v}} \\
\vdots & \ddots & \vdots \\
o_{J_{x}, 1} & \ldots & o_{J_{x}, d_{v}}
\end{array}\right]=\left[\begin{array}{ccc}
- & \boldsymbol{\alpha}_{1} & - \\
& \vdots & \\
- & \boldsymbol{\alpha}_{J_{x}} & -
\end{array}\right]\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{:, 1} & \ldots & \vec{v}_{:, d_{v}} \\
\mid & & \mid
\end{array}\right]
$$

$$
\vec{O}=\mathcal{F}^{\operatorname{attn}}(\vec{X}, \vec{X} ; \theta)=\operatorname{softmax}\left(\frac{\left(\vec{X} \vec{W}^{(q)}\right)\left(\vec{X} \vec{W}^{(k)}\right)^{T}}{\sqrt{d_{k}}}\right)\left(\vec{X} \vec{W}^{(v)}\right)
$$

- GPUs like matrix multiplications \rightarrow usually a lot faster than RNN!
- But: The memory requirements of \vec{E} and \vec{A} are $\mathcal{O}\left(J_{x}^{2}\right)$
- A length up to about 500 is usually ok on a medium-sized GPU (and most sentences are shorter than that anyway).
- But when we consider inputs that span several sentences (e.g., paragraphs or whole documents), we need tricks to reduce memory. These are beyond the scope of this lecture.

ADD-ON: CHANGES FOR CROSS ATTENTION

- Step 1: Scaled dot-product

$$
\vec{E}=\frac{\vec{Q} \vec{K}^{T}}{\sqrt{d_{k}}} ; \quad \vec{E} \in \mathbb{R}^{J_{y} \times J_{x}}
$$

- Step 2: Softmax

$$
\alpha_{j, j^{\prime}}=\frac{\exp \left(e_{j, j^{\prime}}\right)}{\sum_{j^{\prime \prime}=1}^{J_{x}} \exp \left(e_{j, j^{\prime \prime}}\right)}
$$

- Step 3: Output

$$
\vec{O}=\vec{A} \vec{V} ; \vec{O} \in \mathbb{R}^{J_{y} \times d_{v}}
$$

- As one-liner:

$$
\vec{O}=\mathcal{F}^{\operatorname{attn}}(\vec{X}, \vec{Y} ; \theta)=\operatorname{softmax}\left(\frac{\left(\vec{Y} \vec{W}^{(q)}\right)\left(\vec{X} \vec{W}^{(k)}\right)^{T}}{\sqrt{d_{k}}}\right)\left(\vec{X} \vec{W}^{(v)}\right)
$$

- Sequential application of several attention layers, with separate parameters $\left\{\theta^{(1)} \ldots \theta^{(N)}\right\}$
- In Transformer: sequential application of Transformer blocks
- There are some additional position-wise layers inside the Transformer block, i.e., $\vec{O}^{(n)}$ undergoes some additional transformations before becoming the input to the next Transformer block $n+1$
- Application of several attention layers ("heads") in parallel
- M sets of parameters $\left\{\theta^{(1)}, \ldots, \theta^{(M)}\right\}$, with $\theta^{(m)}=\left\{\vec{W}^{(m, q)}, \vec{W}^{(m, k)}, \vec{W}^{(m, v)}\right\}$
- For every head, compute in parallel:

$$
\vec{O}^{(m)}=\mathcal{F}^{\operatorname{attn}}\left(\vec{X}, \vec{Y} ; \theta^{(m)}\right)
$$

- Concatenate all $\vec{O}^{(m)}$ along their last axis; then down-project the concatenation with an additional parameter matrix $\vec{W}^{(o)} \in \mathbb{R}^{M d v \times d_{v}}$:

$$
\vec{O}=\left[\vec{O}^{(1)} ; \ldots ; \vec{O}^{(M)}\right] \vec{W}^{(o)}
$$

MULTI-HEAD ATTENTION

- Conceptually, multi-head attention is to single-head attention like a filter bank is to a single filter (Lecture on CNNs)
- Division of labor: different heads model different kinds of inter-word relationships

Head 8-10

- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

[CLS]

Head 8-11

- Noun modifiers (e.g., determiners) attend to their noun
-94.3% accuracy at the det relation
[CLS]

Clark et al. (2018): What Does BERT Look At? An Analysis of BERT's Attention

[^0]: Figure from Vaswani et al. 2017: Attention is all you need

