Transformer

The Encoder

Learning goals

@ Understand Self-Attention and
the role of position embeddings

@ Understand all the subtleties of
parallelized mult-head attention

ACKNOWLEDGMENTS

@ This presentation is based on slides originally authored by:

Ben Roth

Christian Heumann
Goran Glavas

Ivan Habernal

Leonie Weissweiler
Matthias Assenmacher
Nina Poerner

@ https://slds-1lmu.github.io/d1l4nlp/

Transformer — 1/25

https://slds-lmu.github.io/dl4nlp/

THE TRANSFORMER ARCHITECTURE

(For simpler problems (e.g.,
classification, tagging),

you would simply use

the encoder.)

Output
Probabilities —|

Add & Norm

Add & Norm _Je=~

£9d Nom Mut-Head
Feed Attention
Forward) Nx

g N Add & Nom
> Add & Norm Masked
8 Multi-Head Multi-Head
I Attention Attention
L¥ 2 L¥ >
\ —
Positional A Positional
Encoding Encoding
I Input I I Output I
Embeddi Embedd
X (source) L ST L meT L Y (target)
Inputs Outputs /
(shifted right)

Figure from Vaswani et al. 2017: Attention is all you need

Transformer — 2/25

ATTENTION IN THE TRANSFORMER

@ We can use attention on many different “things”, including:
e The pixels of images
e The nodes of knowledge graphs
e The words of a vocabulary

@ Here, we focus on scenarios where the query, key and value
vectors represent tokens (e.g., words, characters, etc.) in
sequences (e.g., sentences, paragraphs, etc.).

Transformer — 3/25

ATTENTION IN THE TRANSFORMER

Cross-attention:
@ LetX=(x1...x5),Y=(y1...yy,) be two sequences (e.g.,
source and target in a sequence-to-sequence problem)
@ The query vectors represent tokens in Y and the key/value vectors
represent tokens in X (“Y attends to X”)
Self-attention:
@ There is only one sequence X = (x1...Xy)
@ The query, key and value vectors represent tokens in X (“X
attends to itself”)

Transformer — 4/25

CROSS-ATTENTION (1)

@ Here, we describe cross-attention. Self-attention can easily be
derived by assuming X = Y.

Let X € RX*% Y ¢ R%»*% be representations of X, Y (e.g.,
stacked word embeddings, or the outputs of a previous layer)
Let = {W(9) ¢ RY*d Wk c Roxd () ¢ RAxd} pe
trainable weight matrices

We transform Y into a matrix of query vectors:
&= VW)

We transform X into matrices of key and value vectors:

K=Xw®, v=Xxw"

Transformer — 5/25

CROSS-ATTENTION (2)

@ To calculate the e scores (step 1 of the basic recipe), Vaswani et
al. use a parameter-less scaled dot product instead of Bahdanau’s
complicated FFN:

—»T—’
.k
ey = a(q, ky) = \]/dT(

@ Note: This requires that dy = di

@ Attention weights and outputs are defined like before (steps 2 and
3 of the basic recipe):

exp(8;,)
Z}-j/);:1 exp(ejJ'//)

»
G = oy
J/=1

Q=

Transformer — 6/25

CROSS-ATTENTION (3)

Cross-attention

Transformer — 7/25

CROSS-ATTENTION (4)

Self-attention

Transformer — 8/25

SELF-ATTENTION FORMALIZED

@ Let X € R¥*% pe a representation of X (e.g., stacked word
embeddings, or the outputs of a previous layer)

o Letd = {W(9) ¢ RI*d K) ¢ RIXd /() & RB¥] pe
trainable weight matrices
@ We transform X into a matrix of query vectors:

G = XW
@ And we transform X into matrices of key and value vectors:

K=Xw®, v=xw

Transformer — 9/25

CAN SELF-ATTENTION MODEL WORD ORDER?

@ Our model consists of a self-attention layer on top of a simple word
embedding lookup layer. (For simplicity, we only consider one
head, but this applies to multi-head attention as well.)

o Let X(1), be two sentences of the same length J, which
contain the same words in a different order

@ Example: “john loves mary” vs.

M

Transformer — 10/25

CAN SELF-ATTENTION MODEL WORD ORDER?
@ Definition of o;:
J
&= iy
ji=1

@ Since addition is commutative, and the permutation is bijective, it is
sufficient to show that:

(M=) _
v/’6{1 Jhie{t, YO Ve T =
@ Step 1: Let’s show that V,V/.“) =

@ Definition of vj:
Vo VT/(V)T)?/.

<

@ Then:

;j(w: — W(v)T;j(ﬂ: wnT 2 v/ﬂ):

Transformer — 11/25

CAN SELF-ATTENTION MODEL WORD ORDER?

@ Step 2: Let’s show that Vje{17__7J}7j,6{17__7‘,}a/(},) =
@ Definition of ¢ jr:

exp(e;)
J
2 jn—1exp(ej)

@ Since the sum in the denominator is commutative, and the
permutation is bijective, it is sufficient to show that

Q=

1
Vj€{1,...,J},j’€{1,...,J}eﬁj’) =

Transformer — 12/25

CAN SELF-ATTENTION MODEL WORD ORDER?

@ Definition of g;

1 - 1 - . - R
& = ﬁqlka' = ﬁ(W(q)T&)T(W(k)TW)
@ Then:
2(1) _ 21) _
VA A X © =
— w@Tx() _ (a7 A VT/(k)T)?j(,1) - w7
— 57/(1) A @(/1) _
— 5,(1)qu(/1) _
1 zorpm _ 1
—_— — k., ——
a7 Vdk
e ej(,;,) =

Transformer — 13/25

CAN SELF-ATTENTION MODEL WORD ORDER?

@ In other words: The representation of mary is identical to that of

, and the representation of john is identical to that of
@ Question: Can the other layers in the Transformer architecture
(feed-forward net, layer normalization) help with the problem?
e No, because they apply the same function to all positions.
@ Question: Would it help to apply more self-attention layers?

e No. Since the representations of identical words are still
identical in O, the next self-attention layer will have the same
problem.

@ So... does that mean the Transformer is unusable?

@ Luckily not. We just need to ensure that input embeddings of
identical words at different positions are not identical.

Transformer — 14/25

POSITION EMBEDDINGS

@ Add to every input word embedding a position embedding p € R?:
@ Input embedding of word “mary” in position j: X; = VT/I(mary) + p;

WI(mary) + 5/' 7é WI(mary) + :6/" if j 7é j/

@ Option 1 (Vaswani et al., 2017): Sinusoidal position embeddings
(deterministic):

sin(—L—) if i is even
pji = 10000d
’ cos(—2L=) ifiisodd
10000

@ Option 2 (Devlin et al., 2018):
Trainable position embeddings: P € RV

e Disadvantage:
Cannot deal with sentences that are longer than J™#*

Transformer — 15/25

PARALLELIZED ATTENTION

We want to apply our attention recipe to every query vector 6,

We could simply loop over all time steps 1 < j < Jy (or J,) and
calculate each &; independently.

Then stack all 5; into an output matrix O € R»*% (or R *%)

But a loop does not use the GPU’s capacity for parallelization

So it might be unnecessarily slow

Transformer — 16 /25

PARALLELIZED SELF-ATTENTION

@ Do some inputs (e.g., 6,-) depend on previous outputs (e.g., 5,-,1)?
If not, we can parallelize the loop into a single function:

—

0 = F¥"(X, X; 0)

@ Attention in Transformers is usually parallelizable, unless we are
doing autoregressive inference (more on that later).

@ By the way: The Bahdanau model is not parallelizable in this way,
because s; (a.k.a. the query of the / + 1’st step) depends on ¢;
(a.k.a. the attention output of the /’'th step), see last lecture:

The hidden state s; of the decoder given the annotations from the encoder is computed by
s;i =(1 —z;)08i-1 4 2; © 54,
where
3; =tanh (WEy;_1 + U [r; 0 s;1] + Ce;)
zi =0 (W.Ey;_1 + Ussiy + C.ci)
ri =0 (W, Ey; 1 + Upsi_1 + Cye;)

Transformer — 17 /25

PARALLELIZED SELF-ATTENTION

@ Step 1: The parallel application of the scaled dot product to all
query-key pairs can be written as:

QL

R‘T

E= E € RIxH
v dk
—keys—
A S @ T |
queries| @ .. 1 | =-— ; ki Ky
! Vel g | i
€Ul - Cuidy — Qu —

Transformer — 18/25

PARALLELIZED SCALED DOT PRODUCT
SELF-ATTENTION

@ Step 2: Softmax with normalization over the second axis (key
axis):
exp(ej,)
Jy
> ji—1 exp(ej)

@ Let's call this new normalized matrix A € (0, 1)

& =

@ The rows of A, denoted @, are probability distributions (one & per
9)

Transformer — 19/25

PARALLELIZED SCALED DOT PRODUCT
SELF-ATTENTION

@ Step 3: Weighted sum

—dy(value dims)—

\l/ 011 ... O14, — Oy — ‘
queries | : : = : V. 1
i Oy1 -+ Ouy.d, - oy, — ‘

Transformer — 20/25

.. AS A ONE-LINER

()?W(q))()?VT/(k))T
Vdk

O = F (X, X; 0) = softmax()()?VT/(V))

@ GPUs like matrix multiplications
— usually a lot faster than RNN!

e But: The memory requirements of £ and A are O(J2)

@ A length up to about 500 is usually ok on a medium-sized
GPU (and most sentences are shorter than that anyway).

e But when we consider inputs that span several sentences
(e.g., paragraphs or whole documents), we need tricks to
reduce memory. These are beyond the scope of this lecture.

Transformer — 21/25

ADD-ON: CHANGES FOR CROSS ATTENTION

@ Step 1: Scaled dot-product

AT
E= QK . E € Ry
v dk
@ Step 2: Softmax
_ exp(ey)
Qjj

@ Step 3: Output

@ As one-liner:

O = FH™ (X Y;0) = softmax(

Transformer — 22/25

MULTI-LAYER ATTENTION

@ Sequential application of several attention layers, with separate
parameters {6(") ... (M)}

@ In Transformer: sequential application of Transformer blocks

@ There are some additional position-wise layers inside the
Transformer block, i.e., O(") undergoes some additional

transformations before becoming the input to the next Transformer
block n + 1

Transformer — 23 /25

MULTI-HEAD ATTENTION

@ Application of several attention layers (“heads”) in parallel

@ M sets of parameters {#(1) ... (M1 with
o0m) — (Wma), Jmk) im)y

@ For every head, compute in parallel:
5(m) — fattn()_(" {/" e(m))
@ Concatenate all O(™ along their last axis; then down-project the
concatenation with an additional parameter matrix

o) c RMdvxdy .

0= [5(1); ce 5(M)]V_\7(°)

Transformer — 24 /25

MULTI-HEAD ATTENTION

@ Conceptually, multi-head attention is to single-head attention like a
filter bank is to a single filter (Lecture on CNNs)

@ Division of labor: different heads model different kinds of
inter-word relationships

Head 8-10 Head 8-11
- Direct objects attend to their verbs - Noun modifiers (e.g., determiners) attend
- 86.8% accuracy at the dobj relation to their noun
- 94.3% accuracy at the det relation
[CLS] [CLs] [CLS] [CLS]
It It It It [cLs), [cLs]
" ’ They, The
goes goes declined ///de:hned [C.I_L:l.\ .[I_E\le 45-year-old, 45-year-old
on son to to © e icateq formery former
to to discusss discuss ‘c:ﬂmza\caee General General
plug plug its its n guiag Electric Electric
al a plans plans the Co. cCo.
P fow for- for e executive executive
i bt e X 9 ﬂgures\ figures
diversified |\l diversified upgrading; ~upgrading \ ‘"‘*W it it
Fidelity, \| Fidelity i its e will, will
funds/\\ \§ -funds current muddied be-\ be
by by product product the ea;er\ \ te:sler
name name line \ tine fight nm:\\' time
[SEP] [SEP] [SEP) SEP) (SEP) ISEP] (SEP]

Clark et al. (2018): What Does BERT Look At? An Analysis of BERT's Attention

Transformer — 25/25

