Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages

AYYOOB IMANI, PEIQIN LIN, AMIR HOSSEIN KARGARAN, Silvia Severini, Masoud Jalili Sabet, Nora Kassner, Chunlan Ma, Helmut Schmid, André Martins, Françols Yvon, Hinrich Schütze CIS/LMU, MCML
Instituto Superior TÉCNico, SORBONNE/CNRS

multilingual team

LLMs are getting ever larger

LLMs: Vertical vs horizontal growth

- Vertical growth: huge model and corpus sizes
- Only possible for a few languages
- GPT, Bloom, Bard
- Horizontal growth: more languages
- Our approach: Glot500

Data available per language

- Typical power law distribution
- About 100 head languages:
- Large corpora available
- Covered by main LLMs
- 1000s of (long-)tail languages
- Little data available
- Most of it hard to get
- Our focus in Glot500

Coverage of existing models

Out of $+/-7000$ languages

Supported Languages

1250

Licensing issues

- We are working on making corpora for most languages available.
- But we cannot release the entire corpus due to licensing issues.

Coverage of existing models

- Mostly European
- Plus a few other large national languages
- Primary driver: business

Why multilingual LLMs?

- Preserve culture
- Empower people
- Bread and butter issues
- Analyze tweets in an emergency

Why multilingual LLMs?

- Making internet accessible
- Multilingual user base
- Search, customer support, chatbots
- Detection of Harmful content in social media
- Translation
- Cross-lingual transfer for standard NLP tasks

- Text classification
- Sequence labeling

An LLM for 500 languages: Challenges

- Collect good data for tail languages
- Evaluate tail languages
- Determine critical factors for tail languages

How to collect good data for tail languages

Two corpora: Glot2000 and Glot500

- Glot2000: >2000 languages
- Glot500: subset of Glot2000, >500 languages
- Selection criterion: >=30 000 sentences
- Collecting, validating and cleaning the data was (and still is!) a very significant effort

Challenges with tail languages

- Scarcity of data
- Noise in data
- Wikipedia is noisy
- Data leakage
- Similarity of dialects
- Macro language / varieties

Challenges: Wikipedia

Magnolia soulangeana		文A 24 languages \vee		
Artikulo Panaghisgot-hisgot	Basaha	Usba	Usba ang wikitext	Tan-awa ang kaagi Mga galamiton \vee

Gikan sa Wikipedia, ang gawasnong ensiklopedya

Paghimo ni bot Lsjbot.
Kaliwatan sa magnolia ang Magnolia soulangeana. ${ }^{[1]}$ Una ning gihulagway ni Soul.-bod.. ${ }^{[2]}$ Ang Magnolia soulangeana sakop sa kahenera nga Magnolia, ug kabanay nga Magnoliaceae. ${ }^{[1][3]}$
Kini nga matang hayop na sabwag sa:

- Alabama
- habagatan-sentrong Pangmasang Republika sa Tsina

Walay nalista nga matang nga sama niini. ${ }^{[1]}$

Ang mga gi basihan niini [usba | usba ang wikitext]

1. $\uparrow^{1.0}$ 1.1 1 1.2 Roskov Y., Kunze T., Orrell T., Abucay L., Paglinawan L., Culham A., Bailly N., Kirk P., Bourgoin T., Baillargeon G., Decock W., De Wever A., Didžiulis V. (ed) (2019). "Species 2000 \& ITIS Catalogue of Life: 2019 Annual Checklist" \longleftarrow. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-884X. TaxonID:

Challenges: Macro vs varieties

Challenges: Leakage

- Example: Swiss German / German, Welsh / English
- Data from high-resource languages leak to low-resource ones
- Made up example
- 10^7 crawled sentences, mix of H (head) and T (tail)
- Proportion language $\mathrm{T}: 1 \mathbf{1 0}^{\wedge} 5$ sentences
- LangID:

■ Accuracy: 99\%, false positive rate: 1\%

- Corpus of language T after filtering:
- Roughly $10^{\wedge} 5$ in language T
- $10^{\wedge} 5$ in language H

Challenges: LangID

How clean are existing multilingual datasets?

	mC4	Oscar	WikiMatrix	ParaCrawl	CCAligned
Source	CC	CC	Wikipedia	Selected websites	CC
Correct (macro F1)	72.40%	87.21%	23.74%	76.14%	29.25%

Data from Kreutzer, et al. "Quality at a glance" 2022

Data from the web: CommonCrawl

- Access for anyone
- Petabytes of data since 2011

- Monthly snapshots (2-3 Billion pages)
- Random sample of URLs
- Noisy web content
- Poor separation of languages
- Bad quality of their LangID

LangID on CommonCrawl

- Domain mismatch with LangID training data
- High false positive rate
- Out-of-model cousins
- So we don't use CommonCrawl

Our approach: Stand on the shoulders ...

- Identify all languages for which some text available
- Our search strategy: publications, low-resource websites (e.g., for Bible), ...
- Anything that promises to provide enough volume
- Collect as much as we can
- Analyze, categorize, clean

Our approach: Stand on the shoulders ...

- Story:
- Companies doesn't work
- Crawling the web doesn't work
- So we decided to rely on academia

Our approach: Stand on the shoulders ...

- Story 2:
- Acadmeia: all scattered, no central repository, ELRA: yes,but
- Lrec, elra
- Publications and following all links
- Our knowledge
- Wikipedia multilingual dataset page

Types of sources

- Websites (jw.org) - we crawl them
- Repositories (opus) - we download them
- Datasets published academically - we download them

Repositories / Datasets

- Opus
- LREC publications
- ELRA
- MT-Data
- Hugging Face
- Wikimedia

Data collection: Websites/Datasets

- Websites
- Jw.org
- bbc.com
- lyricstranslate.com
- Datasets (150)
- Multilingual
- PBC, Tatoeba, Flores100, TICO, W2C
- \quad Single language or single family
- Indic NLP
- Arabench, Quadi, Shami
- Afromaft, KinyaSMT

LangID: Reliability and domain issues

- Reliability of language Detection/Verification
- Automatic (LID)
- Translator
- Native speaker or linguist
- Domain
- News
- Religious
- Tweets
- Radio/TV/Movie transcripts
- Medical
- Lyrics

Coverage of existing models

- Mostly European
- Plus a few other large national languages
- Primary driver: business

Coverage of existing models

Glot2000: 2266 langs, 728GB

Glot500: Subset of Glot2000

- All language-scripts that had at least 30000 sentences
- 30000 is somewhat arbitrary
- Too low for some, too high for others: see last part

Glot500: Languages per family

Number of Languages per Family

Glot500: Languages per family

family	languages	family	languages	family	languages	family	languages	
indo1319	152	aust1305	6	choc1280	2	nucl1708	1	
atla1278	133	mand1469	5	chib1249	2	guai1249	1	
aust1307	74	tupi1275	5	pidg1258	2	book1242	1	
sino1245	28	drav1251	5	kart1248	2	tara1323	1	
afro1255	25	araw1281	5	mixe1284	2	ticu1244	1	
turk1311	20	nucl1709	4	toto1251	2	kore1284	1	
maya1287	16	taik1256	3	cent2225	2	mata1289	1	
ural1272	12	mong1349	3	tuca1253	2	japo1237	1	
arti1236	9	nakh1245	3	gong1255	2	arau1255	1	
otom1299	9	abkh1242	2	misu1242	2	atha1245	1	
quec1387	8	krua1234	2	hmon1336	2	khoe1240	1	
utoa1244	7	eski1264	2	nucl1710	1	tebe1251	1	
nilo1247	6	ayma1253	2					

Glot500: Sentences per family

Available Sentences per Family

Glot500: Sentences per family

Family	Sentences	Family	Sentences	Family	Sentences	Family	Sentences
indo1319	977086139	maya1287	2892664	abkh1242	389492	cent2225	68472
drav1251	135350643	japo1237	1497574	gong1255	346243	hmon1336	79294
aust1307	$1.14 \mathrm{E}+08$	kart1248	1240388	mand1469	324500	tebe1251	50645
afro1255	$7.58 \mathrm{E}+07$	quec1387	1194197	chib1249	306124	krua1234	46151
turk1311	63025704	pidg1258	1060411	toto1251	260046	guai1249	44473
atla1278	5.77E+07	otom1299	966777	mixe1284	248719	tuca1253	41681
ural1272	36702676	nakh1245	777504	arau1255	155882	choc1280	39415
aust1305	16747595	utoa1244	735554	atha1245	147702	nucl1708	34349
arti1236	9767069	nilo1247	632011	tara1323	133251	ticu1244	31852
taik1256	8005494	araw1281	551863	misu1242	126118	nucl1710	31765
kore1284	6468444	tupi1275	495319	khoe1240	109747	book1242	30698
mong1349	5107392	eski1264	490504	nucl1709	108755	mata1289	30517
sino1245	4953590	ayma1253	434899				

Corpus size per language: Distribution

Histogram of Corpus Length

Script detection

- Tajik: Arabic and Cyrillic
- Mongolian: Mongolian, Cyrillic, and Latin
- We detect the script for each sentence
- Treat each language-script as separate entity

N -gram language models

- D(i): Data for language-script i
- M(i): KenLM Character-level LM using D(i)

Perplexity-based language divergence

$D(i, j)=\max (P P(M(i), D(j)), P P(M(j), d(i))$

Sentence/corpus level filters

- Sentence level filters
- eliminate noisy sentences
- Corpus level filters:
- Drop the whole corpus
- Majority of the sentences are incorrect
- Data belongs to another language
- Non meaningful content from web
- LangID based filters
- Homogeneity Clustering Filters

Sentence level filters

- Character repetition
- Word repetition
- Special characters
- Small sentences
- Duplicates

Corpus level filters

- Language script mismatch
- Perplexity mismatch
- Nearest neighbor of $L(i)$ is not a typological family member

LangID filters

- Out-of-model cousin issue
- Combine multiple LangID methods
- CLD2 and CLD3
- LangID.py
- LangDetect
- EquilID
- Fastext
- Franc (414 langs)
- AfroLID (517 langs)
- CIS-Fasttext (13xx languages from PBS and JW)

LandID for head languages

- Works pretty well
- Main issue 1: close languages not covered by LangID
- E.g., Lombard vs Italian
- Main issue 2: domain, historical text, genre (tweets) etc.

LangID for tail languages (in progress)

- Accept if trusted LIDs agree
- Accept if trusted LIDs agree on macro language
- Accept metadata if confirmed by trusted LIDs
- Accept metadata if macro language confirmed by trusted LID
- Accept metadata if we don't have LID and i is unique
- Accept metadata if we don't have LID and i is unique modulo varieties

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

- Train an m-gram LM for each cluster
- For each point find the distance to closest cluster.

Distance $=$ Perplexity of sentence given the language model.

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

Pick the first K samples with least distance to a cluster

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

- Pick the first K samples with least distance to a cluster
- Add them to corresponding cluster

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

- Recreate the language models

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

- Repeat:
- Find the closest cluster to each sample
- Add first K samples with the least distance to the corresponding cluster
- Update language models

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

- Repeat:
- Find the closest cluster to each sample
- Add first K samples with the least distance to the corresponding cluster
- Update language models

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

- Repeat:
- Find the closest cluster to each sample
- Add first K samples with the least distance to the corresponding cluster
- Update language models

Is a corpus mono- or bilingual?

- Homogeneity Clustering filters

- Repeat:
- Find the closest cluster to each sample
- Add first K samples with the least distance to the corresponding cluster
- Update language models

Is a corpus mono- or bilingual?

- If we end up with clusters that highly diverge in terms of perplexity, then we judge the cluster to be multilingual.

- Repeat:
- Find the closest cluster to each sample
- Add first K samples with the least distance to the corresponding cluster
- Update language models

Glot500 model: Training

Glot500-c: Subset of Glot2000-c

- Language-scripts with at least 30k sentences
- 511 languages
- 534 language-scripts
- 610 GB

Glot500-m: Model trained on Glot500-c

- Continuous pretraining of XLM-R base
- Sampling using multinomial distribution to alleviate bias towards high-resource languages
- Early stopping on average of downstream tasks

Glot500-m: Vocabulary extension

- Sentence piece with ULM: 250K tokens
- Merge with XLM-R vocabulary
- 150K new tokens
- Vocabulary size $250 \mathrm{~K}+150 \mathrm{~K}=400 \mathrm{~K}$
- Makes a huge difference for new scripts
- Apart from scripts, makes frustratingly little difference

Glot500: Parameters

XLM-R-B XLM-R-L Glot500-m

Model Size	278 M	560 M	395 M
Vocab Size	250 K	250 K	401 K
Transformer Size	86 M	303 M	86 M

Early stopping

Sentence Retrieval Tatoeba

POS

epochs

Sentence Retrieval Bible

NER

An LLM for 500 languages: Challenges

- Collect good data for tail languages
- Evaluate tail languages
- Determine critical factors for tail languages

How to evaluate tail languages

Tail language evaluation: Challenges

- Most papers claim: we cover N languages
- But for many/most languages there is no quantitative evidence!
- What does coverage mean?

Tail lang evaluation: Challenges

Building Machine Translation Systems for the next 1000 Lang's

- ti tigrinya 4M
- ay aymara 300K
- bm bambara 200K
- ts tsonga ts 1.3 M
- lus miso 8M
- Dyula 130K
- We conduct and report the findings from human evaluations of our models (on a subset of 28 languages), confirming that it is possible to build functioning MT systems by following the recipe described in this paper (4.4).
- Impressive. Significant advance over prior work. But how much progress for low-resource?

en \rightarrow ti en \rightarrow ay en \rightarrow bm en \rightarrow ts en \rightarrow lus

Evaluation tasks

- Pseudo Perplexity
- Round-trip alignment
- Sentence retrieval
- Bible
- Tatoeba
- Sequence labeling
- NER
- POS
- Text classification

Evaluation tasks

| | \mid head | \|tail| | measure (\%) |
| :--- | ---: | ---: | :---: |
| Sentence Retrieval Tatoeba | 70 | 28 | Top10 Acc. |
| Sentence Retrieval Bible | 94 | 275 | Top10 Acc. |
| Text Classification | 90 | 264 | F1 |
| NER | 89 | 75 | F1 |
| POS | 63 | 28 | F1 |
| Roundtrip Alignment | 85 | 288 | Accuracy |

Round Trip Alignment

Round Trip Alignment

Round Trip Alignment

Glot500 results: Average over languages

| | tail | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | XLM-R-B | XLM-R-L | Glot500-m | XLM-R-B | CLM-R-L | Glot500-m | XLM-R-B XLM-R-L Glot500-m |

Glot500 vs XLM-R-Base: Pseudoperplexity

Glot500 vs XLM-R-Base: Pseudoperplexity

- XML-R-B outperforms Glot500 on 8 langs
- 5 with similar head languages:
- Standar Estonian -> Estonian
- Gheg Albanian -> Albanian
- Norwegian Bokmal -> Norwegian
- Serbo Croatian -> Serbian
- Standard Latvian -> Latvian
- 3 with new scripts:
- Santali -> Ol Chiki script
- Dhivehi -> Thaana script
- Inuktitut -> Inuktitut Syllabics
- Artifact of pseudoperplexity evaluation

	head languages	tail languages
Glot500-m is better	37	420
XLM-R-B is better	69	8

Langs with high pseudoperplexity (up to 94)

- Toki Pona: constructed language, high variability
- Mesopotamian Arabic: tweets
- Three Nilotic languages: Luo, Acoli, Teso
- Also highly variable?
- Train/test mismatch?

Glot500 vs XLM-R: Best/worst results

		language-script	XLMR	t500	gain		language-script	XLMR	t500	gain
		tat CTatar	10.3	70.3	60.0	$\begin{aligned} & 00 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	uzn CNorthern Uzbek	5.4	87.0	81.6
		nds L Low German	28.8	77.1	48.3		crs L Seselwa Creole	7.4	80.6	73.2
		tuk L Turkmen	16.3	63.5	47.3		srn L Sranan Tongo	6.8	79.8	73.0
		ile L Interlingue	34.6	75.6	41.0		uzb CUzbek	6.2	78.8	72.6
		uzb CUzbek	25.2	64.5	39.3		bcl L Central Bikol	10.2	79.8	69.6
$\begin{aligned} & \vec{a} \\ & 0 \\ & 3 \\ & 0 \end{aligned}$		dtp L Kadazan Dusun	5.6	21.1	15.5		xav L Xavánte	2.2	5.0	2.8
		kab L Kabyle	3.7	16.4	12.7		mauL Huautla Mazatec	2.4	3.6	1.2
		pamL Pampanga	4.8	11.0	6.2		ahk L Akha	3.0	3.2	0.2
		lvs L Standard Latvian	73.4	76.9	3.5		aln L Gheg Albanian	67.8	67.6	-0.2
		nob L Bokmål	93.5	95.7	2.2		nob L Bokmål	82.8	79.2	-3.6
	$\frac{\alpha}{x_{Z}}$	div T Dhivehi	0.0	50.9	50.9	2n	mlt L Maltese	21.3	80.3	59.0
		che CChechen	15.3	61.2	45.9		sah CYakut	21.9	76.9	55.0
		mri L Maori	16.0	58.9	42.9		sme L Northern Sami	29.6	73.6	44.1
		nan L Min Nan	42.3	84.9	42.6		yor L Yoruba	22.8	64.2	41.4
		tgk C Tajik	26.3	66.4	40.0		quc L K'iche'	28.5	64.1	35.6
$\begin{aligned} & \text { B } \\ & 0 \\ & 3 \\ & 0 \\ & \hline 0 \end{aligned}$		zea L Zeeuws	68.1	67.3	-0.8		lzh HLiterary Chinese	11.7	18.4	6.7
		vol L Volapük	60.0	59.0	-1.0		nap L Neapolitan	47.1	50.0	2.9
		min L Minangkabau	42.3	40.4	-1.8		hyw A Western Armenian	79.1	81.1	2.0
		wuuHWu Chinese	28.9	23.9	-5.0		kmr L Northern Kurdish	73.5	75.2	1.7
		lzh HLiterary Chinese	15.7	10.3	-5.4		aln L Gheg Albanian	54.7	51.2	-3.5

Languages with multiple scripts

lang-script		XLM-R-B	Glot500	gain
uig_Arab	head	0.458	0.562	0.104
uig_Latn	tail	0.098	0.628	0.530
hin_Deva	head	0.670	0.766	0.096
hin_Latn	tail	0.136	0.432	0.296
uzb_Latn	head	0.548	0.676	0.128
uzb_Cyrl	tail	0.062	0.788	0.726
kaa_Cyrl	tail	0.176	0.738	0.562
kaa_Latn	tail	0.092	0.434	0.342
kmr_Cyrl	tail	0.040	0.424	0.384
kmr_Latn	tail	0.358	0.630	0.272
tuk_Cyrl	tail	0.136	0.650	0.514
tuk_Latn	tail	0.096	0.662	0.566

Major eval result: Poor performance on 10s of langs

		language-script	XLMR	t500	gain		language-script	XLMR	t500	gain
		tat CTatar	10.3	70.3	60.0	$\begin{aligned} & 00 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	uzn CNorthern Uzbek	5.4	87.0	81.6
		nds L Low German	28.8	77.1	48.3		crs L Seselwa Creole	7.4	80.6	73.2
		tuk L Turkmen	16.3	63.5	47.3		srn L Sranan Tongo	6.8	79.8	73.0
		ile L Interlingue	34.6	75.6	41.0		uzb CUzbek	6.2	78.8	72.6
		uzb CUzbek	25.2	64.5	39.3		bcl L Central Bikol	10.2	79.8	69.6
$\begin{aligned} & \vec{a} \\ & 0 \\ & 3 \\ & 0 \end{aligned}$		dtp L Kadazan Dusun	5.6	21.1	15.5		xav L Xavánte	2.2	5.0	2.8
		kab L Kabyle	3.7	16.4	12.7		mauL Huautla Mazatec	2.4	3.6	1.2
		pamL Pampanga	4.8	11.0	6.2		ahk L Akha	3.0	3.2	0.2
		lvs L Standard Latvian	73.4	76.9	3.5		aln L Gheg Albanian	67.8	67.6	-0.2
		nob L Bokmål	93.5	95.7	2.2		nob L Bokmål	82.8	79.2	-3.6
	$\frac{\times}{\pi}$	div T Dhivehi	0.0	50.9	50.9	$\begin{aligned} & \text { n } \\ & 0 \end{aligned}$	mlt L Maltese	21.3	80.3	59.0
		che CChechen	15.3	61.2	45.9		sah CYakut	21.9	76.9	55.0
		mri L Maori	16.0	58.9	42.9		sme L Northern Sami	29.6	73.6	44.1
		nan L Min Nan	42.3	84.9	42.6		yor L Yoruba	22.8	64.2	41.4
		tgk CTajik	26.3	66.4	40.0		quc L K'iche'	28.5	64.1	35.6
B0030		zea L Zeeuws	68.1	67.3	-0.8		lzh HLiterary Chinese	11.7	18.4	6.7
		vol L Volapük	60.0	59.0	-1.0		nap L Neapolitan	47.1	50.0	2.9
		min L Minangkabau	42.3	40.4	-1.8		hyw A Western Armenian	79.1	81.1	2.0
		wuuHWu Chinese	28.9	23.9	-5.0		kmr L Northern Kurdish	73.5	75.2	1.7
		lzh HLiterary Chinese	15.7	10.3	-5.4		aln L Gheg Albanian	54.7	51.2	-3.5

At least one measure for each covered language

Glot500-m	Language-Script	XLM-R-B	XLM-R-L	Glot500-m	Language-Script	XLM-R-B	XLM-R-L	Glot500-m
$\mathbf{8 . 8}$	tsn_Latn	264.7	137.8	$\mathbf{1 2 . 5}$	orm_Latn	23.4	$\mathbf{8 . 6}$	16
$\mathbf{7 . 2}$	pon_Latn	928.4	181.9	$\mathbf{1 9 . 2}$	luo_Latn	699.4	258.5	$\mathbf{8 5 . 1}$
$\mathbf{1 8 . 3}$	nmf_Latn	297.6	310.6	$\mathbf{4 4 . 9}$	pcm_Latn	38.3	169.6	$\mathbf{3 . 6}$
$\mathbf{1 5 . 2}$	ajg_Latn	147.1	149.5	$\mathbf{2 2 . 6}$	nnb_Latn	364.1	95	$\mathbf{2 8 . 6}$
$\mathbf{6 . 4}$	tir_Ethi	28.3	15.7	$\mathbf{4 . 4}$	kaz_Cyrl	$\mathbf{4 . 3}$	5.4	9.6
7.6	bhw_Latn	411.2	126.2	$\mathbf{2 1 . 6}$	dzo_Tibt	8.5	$\mathbf{3 . 3}$	5.7
$\mathbf{1 7 . 6}$	mhr_Cyrl	122.9	168.4	$\mathbf{5 . 8}$	sun_Latn	23.6	$\mathbf{1 1 . 9}$	17
$\mathbf{5 . 8}$	swe_Latn	4.8	$\mathbf{3 . 5}$	12.7	vec_Latn	40.6	21.1	$\mathbf{9 . 2}$
$\mathbf{9 . 7}$	scn_Latn	117	64.9	$\mathbf{7 . 8}$	ayr_Latn	261.1	237.6	$\mathbf{2 7 . 7}$
$\mathbf{4 . 3}$	udm_Cyrl	356.7	224.9	$\mathbf{6 . 7}$	oke_Latn	209.2	220.1	$\mathbf{1 3 . 0}$
$\mathbf{1 1 . 9}$	ifb_Latn	246.3	177.9	$\mathbf{5 . 1}$	kur_Latn	14.2	$\mathbf{6 . 8}$	10.3
19.5	naq_Latn	136.8	60.2	$\mathbf{1 5 . 7}$	mgh_Latn	680	272.8	$\mathbf{2 3 . 7}$
$\mathbf{3 7 . 7}$	zlm_Latn	5.6	$\mathbf{3 . 3}$	4.6	tgk_Cyrl	181.3	153	$\mathbf{4 . 5}$
7.2	hrx_Latn	478.1	679.1	$\mathbf{1 4 . 9}$	sop_Latn	607.5	228.2	$\mathbf{2 9 . 5}$
$\mathbf{9 . 4}$	lzh_Hani	70	58	$\mathbf{2 1 . 8}$	mos_Latn	272.6	118.3	$\mathbf{1 3 . 2}$
$\mathbf{5 . 2}$	pap_Latn	674.4	149.3	$\mathbf{1 8 . 1}$	rap_Latn	36.1	31.1	$\mathbf{2 . 8}$
$\mathbf{1 7 . 5}$	cfm_Latn	235.1	155	$\mathbf{1 4 . 0}$	prk_Latn	69.4	45.9	$\mathbf{7 . 1}$
$\mathbf{1 9 . 6}$	chv_Cyrl	122.5	73.8	$\mathbf{5 . 4}$	uzb_Cyrl	236.2	138.4	$\mathbf{4 . 9}$
$\mathbf{1 7 . 3}$	tdt_Latn	641.9	78.6	$\mathbf{9 . 7}$	tog_Latn	821.1	777.7	$\mathbf{1 3 . 4}$
$\mathbf{1 4 . 3}$	pan_Guru	4.4	$\mathbf{2 . 5}$	4.3	mal_Mlym	5	$\mathbf{3 . 7}$	6.2

Major eval result: Poor performance on 10s of langs

ceb_Latn
ces_Latn
cfm_Latn
che_Cyrl
chv_Cyrl
cmn_Hani
cnh_Latn
crh_Cyrl
crs_Latn
csy_Latn
ctd_Latn
ctu_Latn
cuk_Latn
cym_Latn
dan_Latn
deu_Latn
djk_Latn
dln_Latn
dtp_Latn
dyu_Latn
dzo_Tibt

$\mathbf{4 9}$	lhu_Latn
53	lin_Latn
$\mathbf{5 5}$	lit_Latn
$\mathbf{2 0}$	loz_Latn
$\mathbf{5 2}$	ltz_Latn
56	lug_Latn
$\mathbf{5 6}$	luo_Latn
$\mathbf{5 7}$	lus_Latn
$\mathbf{6 1}$	lzh_Hani
$\mathbf{5 2}$	mad_Latn
$\mathbf{5 6}$	mah_Latn
$\mathbf{5 1}$	mai_Deva
$\mathbf{4 4}$	mal_Mlym
48	mam_Latn
50	mar_Deva
$\mathbf{5 3}$	mau_Latn
$\mathbf{4 6}$	mbb_Latn
$\mathbf{5 2}$	mck_Latn
$\mathbf{3 9}$	mcn_Latn
$\mathbf{5 2}$	mco_Latn
$\mathbf{5 5}$	mdy_Ethi

6	6	$\mathbf{3 0}$	sot_Latn
10	7	$\mathbf{4 9}$	spa_Latn
54	$\mathbf{6 6}$	$\mathbf{5 3}$	sqi_Latn
10	10	$\mathbf{4 8}$	srm_Latn
22	30	$\mathbf{5 2}$	srn_Latn
16	9	$\mathbf{4 5}$	srp_Latn
12	10	$\mathbf{3 9}$	ssw_Latn
11	7	$\mathbf{5 2}$	sun_Latn
46	$\mathbf{5 5}$	$\mathbf{5 5}$	suz_Deva
23	28	$\mathbf{5 6}$	swe_Latn
6	6	$\mathbf{4 2}$	swh_Latn
34	39	$\mathbf{5 9}$	sxn_Latn
56	$\mathbf{6 4}$	60	tam_Taml
10	6	$\mathbf{3 1}$	tat_Cyrl
55	$\mathbf{6 3}$	$\mathbf{6 0}$	tbz_Latn
5	5	$\mathbf{6}$	tca_Latn
11	7	$\mathbf{4 8}$	tdt_Latn
15	10	$\mathbf{4 1}$	tel_Telu
13	9	$\mathbf{4 3}$	teo_Latn
6	$\mathbf{7}$	$\mathbf{2 8}$	tgk_Cyrl
6	7	$\mathbf{4 7}$	tgl_Latn

11	8
61	$\mathbf{6 9}$
57	$\mathbf{6 8}$
10	9
10	9
55	$\mathbf{6 7}$
14	17
40	$\mathbf{4 7}$
15	13
60	$\mathbf{6 6}$
47	$\mathbf{5 9}$
11	8
56	$\mathbf{6 1}$
21	28
6	6
5	5
16	13
55	$\mathbf{6 5}$
12	8
10	7
48	$\mathbf{6 0}$

Major eval result: Poor performance on 10s of langs

- Key methodology requirement for low-resource papers
- Minimum sanity check on actual coverage

An LLM for 500 languages: Challenges

- Collect good data for tail languages
- Evaluate tail languages
- Determine critical factors for tail languages

Critical factors for tail language performance

Non-Factor: Tokenization?

- Character-based representation: performance for scripts that are not covered is terrible
- Byte-based representation: tokenization is only a minor factor?

Factor corpus size

- Other things being equal, corpus size is the key factor that determines performance.
- But things are not equal in many cases!

Factor script

lang-script		XLM-R-B	Glot500	gain
uig_Arab	head	0.458	0.562	0.104
uig_Latn	tail	0.098	0.628	0.530
hin_Deva	head	0.670	0.766	0.096
hin_Latn	tail	0.136	0.432	0.296
uzb_Latn	head	0.548	0.676	0.128
uzb_Cyrl	tail	0.062	0.788	0.726
kaa_Cyrl	tail	0.176	0.738	0.562
kaa_Latn	tail	0.092	0.434	0.342
kmr_Cyrl	tail	0.040	0.424	0.384
kmr_Latn	tail	0.358	0.630	0.272
tuk_Cyrl	tail	0.136	0.650	0.514
tuk_Latn	tail	0.096	0.662	0.566

Factor family

The more langs from a family we support the better performance. (SentRetrB)
family $\quad\left|\left|L_{G}\right|\right| L_{X} \mid$ XLM-R-B Glot500-m gain

indo1319	91	50	41.5	61.4	19.9
atla1278	69	2	5.5	45.2	39.6
aust1307	53	6	13.7	47.0	33.2
turk1311	22	7	20.1	62.9	42.8
sino1245	22	2	7.6	38.9	31.3
maya1287	15	0	3.8	20.3	16.4
afro1255	12	5	13.0	34.3	21.4

Factor related langs

- Glot+1: Adapt to only 1 new language
- Top 3 langs: no "cousin"
- Bottom 3: related lang in Glot500
lang-script
Glot+1 Glot500-m

rug_Latn, Roviana	$\mathbf{5 1 . 0}$	49.0
yan_Latn, Mayangna/Sumo	$\mathbf{4 6 . 4}$	31.8
wbm_Latn, Wa/Va	$\mathbf{4 9 . 6}$	46.4
ctd_Latn, Tedim Chin	47.4	$\mathbf{5 9 . 4}$
quh_Latn, Southern Quechua	33.4	$\mathbf{5 6 . 2}$
tat_Cyrl, Tatar	58.8	$\mathbf{6 7 . 2}$

- Is there really a curse of multilinguality?
- There definitely is a blessing of multilinguality!

Summary

An LLM for 500 languages: Challenges

- Collect good data for tail languages
- Evaluate tail languages
- Determine critical factors for tail languages

