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What Is a Large 
Language Model 
(LLM)?



A large language model (LLM) is …

- A huge neural network
- Based on the transformer architecture
- Trained on a huge text corpus
- and on a huge compute infrastructure

OPT: https://towardsdatascience.com/understanding-the-open-pre-trained-transformers-opt-library-193a29c14a15

https://towardsdatascience.com/understanding-the-open-pre-trained-transformers-opt-library-193a29c14a15


SKIPLarger and larger language models

https://huggingface.co/blog/large-language-models
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://huggingface.co/blog/large-language-models
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


I am 
I am eating
I am eating a 
I am eating a bowl 
I am eating a bowl of 
I am eating a bowl of Caesar
I am eating a bowl of Caesar salad

LLM training

Next Word Prediction:



I am eating a … 

● sandwich ✅
● lot (of) ✅
● bowl (of) ✅
● car ❌
● chair ❌
● house ❌

LLM training

Next Word Prediction:



Next Word Prediction:

Good next word prediction requires world knowledge

The president of the US is … 

● Biden ✅
● Sanders ❌

Next-word prediction may be AI complete.

LLM training



LLM architecture: Transformers/attention

● How does context influence interpretation?
● Attention: each word acts as a query for 

information from all other words.

● Parallelizable (NLP didn’t used to be)

● Attention is a core building block of intelligence

CS 224N - Lecture 9 / 2021

https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf


Reinforcement Learning from Human Feedback (RLHF)

RLHF

- LLMs are also trained on ”human 
feedback”

- Primes the model to generate dialog (as 
opposed to generic corpus text)

- Aligns with human values
- Reduces hallucinations

Key ingredient for LLM success

ChatGPT w/ instruction-tuning

GPT2-XL w/o instruction tuning



Generative AI: Paradigm shift
Before: A separate model 
for each task (silos).

Supervised training

Now: A single all-powerful 
model for all tasks (human 
model, homogenization)
No training (zero-shot)



LLMs: Why now?

● Hardware
GPUs/TPUs: great for linear algebra

● Data
Orders of magnitude more than before

● Architecture
Transformers/attention: scaling

● Many cumulative advances
Each small, but all necessary

https://jinglescode.github.io/2020/05/27/illustrated-guide-transformer/

https://jinglescode.github.io/2020/05/27/illustrated-guide-transformer/


Can it really be that simple?

Yes

The basic principles are simple!

- Of course, simple ideas are often the best and 
what seems obvious in hindsight was not 
obvious at all.

No

The engineering is actually quite hard. Neural 
networks are to a large extent dark magic, 
not science.



Hot Areas of Research
Retrieval
Multimodality
Tools
Code LLMs



Not a Hot Area: Even More Text

Why? Limitations, see below.



Retrieval

● Truthful
● Verifiable
● Access to up-to-date info
● Access to proprietary info
● Turbocharged: LangChain (and similar)

https://jalammar.github.io/illustrated-retrieval-transformer/

LLM

https://jalammar.github.io/illustrated-retrieval-transformer/


Multimodal LLMs

● LLMs were originally just text models.

● Now LLMs are becoming multimodal: 
images, video, audio, code, tables, …

● This could be the area of most 
progress in the short term.

TAPAS: https://aclanthology.org/2020.acl-main.398/

https://aclanthology.org/2020.acl-main.398/


Code LLMs

● Large LLMs can also write code.

● Productivity boost for standard 
building blocks

● Best practice for new generation of 
IDEs

● Many issues (errors, company style, 
intellectual property …)

TAPAS: https://aclanthology.org/2020.acl-main.398/

Credit: Ashwini K, Youtube

https://aclanthology.org/2020.acl-main.398/


What will software engineers do in the future?

● 1980s: design and implementation of basic data structures and algorithms

● 2000s: combining existing libraries and packages with glue code

● 2025: ?

● Software engineers don’t write code, they merely correct it?

● What will the IDE of the future look like?

● Unsolved issues: errors, company style, intellectual property

● System architects will still be needed!

TAPAS: https://aclanthology.org/2020.acl-main.398/

https://aclanthology.org/2020.acl-main.398/


LLMs can manage tasks, tools and people

○ Given a task, decompose it into subtasks

○ Assign subtask to web service (book table, any plugin / API)

○ Search engine, database, calculator

○ Assign subtask to person (solve CAPTCHA)

○ Assign subtask to robot

○ Subtask management is supercomplex, unsolved problem

○ GPT4 API: function calling



LLMs can use tools (and people)



LLMs can use tools (and people): Bengio’s take

● AI agents can now autonomously act in 
the world without human control

● Gives AutoGPT as best example



LLMs can use tools (and people): AutoGPT

● Can write code for subagents and start 
them

● Can hire people to do tasks: TaskRabbit 
worker solving CAPTCHAs

● Can convince people to collaborate on 
goals (e.g., win a war against a hostile 
nation)

● Current limitations: all problems of 
LLMs (see below), task management 
(decomposition, subtask coordination, 
problem context)



LLMs can use tools (and people): Currently very limited



LLM-enabled robots: No integration yet with AutoGPT?

PALM-E: https://palm-e.github.io/

https://palm-e.github.io/


Customizing LLMs for 
Tasks/Domains
Or: How can I use LLMs?



Services

https://www.bloomberg.com/company/press/bloomberggpt-50-billion-parameter-llm-tuned-finance/

chat.openai.com
bing.com
github.com/features/copilot

https://www.bloomberg.com/company/press/bloomberggpt-50-billion-parameter-llm-tuned-finance/


Specific tasks without training

Few-shot priming / in-context learning

- Task specific adaptation, e.g., 
sentiment analysis, question answering

- Prompt engineering
- No training, no parameter changes
- Established, works well
- But somewhat limited 

- no long inputs
- only “surfaces” things the LLM already knows

few-shot priming

LongForm: https://arxiv.org/abs/2304.08460

https://arxiv.org/abs/2304.08460


Finetuning on specific tasks

- Also task specific adaptation
- Also benefits from good prompts
- Also needs training examples
- But in this case explicit supervised 

training, including parameter changes
- Very expensive for LLMs

LongForm: https://arxiv.org/abs/2304.08460

https://arxiv.org/abs/2304.08460


LLMs lack domain-specific knowledge

- They are limited to what’s in the training data.

- Knowledge not in the public domain:

- A model like GPT4 has no idea

- Per-task customization not enough

LongForm: https://arxiv.org/abs/2304.08460

https://arxiv.org/abs/2304.08460


Customizing LLMs: Retrieval

LongForm: https://arxiv.org/abs/2304.08460

https://arxiv.org/abs/2304.08460


Customizing LLMs: Pretraining from Scratch 

- Collect public and proprietary data
- Train LLM from scratch
- Apply to downstream tasks
- Example: BloombergGPT

https://www.bloomberg.com/company/press/bloomberggpt-50-billion-parameter-llm-tuned-finance/

https://www.bloomberg.com/company/press/bloomberggpt-50-billion-parameter-llm-tuned-finance/


Customizing LLMs: Continued Pretraining 

Gather private data and continue pretraining of an available LLM



Customizing LLMs: PEFT

PEFT = Parameter Efficient Finetuning Techniques

More efficient continued pretraining

Methods:

- Prefix tuning
- Adapters
- Low-rank approximation (LoRA)

✅ Cheaper and more modular than monolithic 
training

Prefix-Tuning: https://arxiv.org/abs/2101.00190

https://arxiv.org/abs/2101.00190


Customizing LLMs: Challenges 

§ Licenses 
§ Restrictive license of open-source LLMs: LLaMA, OPT
§ Companies reluctant to provide their data to LLM service provider

§ Expensive
§ Data sparseness
§ Catastrophic forgetting 
§ Customizing the basic vocabulary

1. Extracting Training Data from Large Language Models

https://arxiv.org/abs/2012.07805


Customizing LLMs: Summary 

- Active area of research, no good general solution yet

1. Extracting Training Data from Large Language Models

https://arxiv.org/abs/2012.07805


Limitations



LLMs are “black boxes”

- No understanding of  inner workings of 
LLMs 

- No theory
- No causal chain from training data to 

model behavior
- Many applications require rationales / 

justifications



Hallucination

● Next word prediction encourages LLMs 
to generate coherent content.

● LLMs can generate text that appears 
sensible and logical but may not be 
accurate.

● RLHF fixes this partly, but it’s still a big 
problem.



LLMs have no sense of uncertainty

● Accurate statements vs hallucinations: 
same supreme confidence

● In contrast, humans are very good at 
indicating confidence.

● May be solvable for factual knowledge
● Severe limitation on applications

Language Models (Mostly) Know What They Know: https://arxiv.org/abs/2207.05221

https://arxiv.org/abs/2207.05221


LLMs are inefficient for long input

● Attention is O(n^2)
● Many applications require long input.
● Inefficiency -> cost

● Example: Google search engine

Linformer: https://arxiv.org/abs/2006.04768

https://arxiv.org/abs/2006.04768


LLMs behave badly

- Biased
- Unsafe
- Immoral
- Etc.



Promising Directions



Cognitively Inspired Architectures

● Memory

● Uncertainty assessment



Human - Computer Interaction

● Generative AI promotes laziness and 
reduces critical thinking.

● Generative AI increases workloads.
● Result: Low-quality work
● Something we can do now: better HCI

Jasper AI: https://blog.hubspot.com/marketing/jasper-ai

https://blog.hubspot.com/marketing/jasper-ai


Real Intelligence

Will need a radically different approach

- Explicit (not blackbox) models with symbols and simulation

- Long-horizon, memory access

- Embodiment



Takeaways

● Simple ideas, tough engineering 

● Hot areas: multimodality, retrieval, tools

● Custom LLMs: no best practices yet

● Limitations: blackbox, hallucinations, uncertainty, long inputs

● Promising directions

○ Cognitive inspiration: memory, uncertainty

○ Human-computer interaction

○ Real intelligence


