

# Scaling Test-Time Compute w/ Latent Reasoning A Recurrent Depth Approach

Adrian Mülthaler

@Foundation Model Frontiers Seminar



June 17, 2025



Motivation & Background

## 2 Architecture

# 3 Training



# Discussion

# 6 Conclusion



- Standard LMs scale test-time compute by extended (verbalized) inference or by scaling the parameter counts in pretraining
- Chain-of-thought (CoT) reasoning verbalizes steps
  - $\rightarrow$  Many types of reasoning are hard to express in language



- Amount of computational effort used at inference time
- Allows models to improve output quality by using more processing steps (e.g. deeper recurrences or longer token outputs)
- Useful for **adaptive compute**: spending more effort on harder examples and less on easier ones



- Model thinks in continuous latent space
- Recurrent block enables iterative internal computation
- Mimics human mental effort: deeper for harder tasks



- CoT reasoning requires the model to be **trained on long demonstrations** that are constructed in the domain of interest
- CoT requires extremely long context windows
- Latent Reasoning could capture facets of human reasoning that defy verbalization



- Recurrent transformer block allows test-time depth scaling
- Run Recurrent block for each token
- Latent input injected at every step









- Masked Self-Attention
  - using Rotary Positional Embeddings (RoPE)
- Gated SiLU MLP
- RMSNorm

 $\Rightarrow$  The **underlying structure** for all other Blocks





- Sigmoid Linear Unit
- SiLU(x) =  $x \cdot \sigma(x)$ ,  $(\sigma(x) = \frac{1}{1+e^{-x}})$







- Embed Input Tokens x as  $\gamma E(\mathbf{x})$ 
  - E: Embedding Matrix
  - $\gamma$ : Embedding Scale
- Then: apply Decoder Block  $\ell_P$  Times





- Adapter Matrix  $A \in \mathbb{R}^{2h imes h}$
- Latent input e injected at every step
  - Maps concatenation [s<sub>i</sub>; e] back to hidden dimension h
- Then: apply Decoder Block  $\ell_R$  Times
- s<sub>0</sub> is initialized by sampling from a standard deviation





- apply Decoder Block  $\ell_C$  Times
- Project into Vocabulary
  - using tied Embeddings  $E^{T}$





- Model size:
  - n° of layers in each stage:  $(\ell_P, \ell_R, \ell_C)$
  - n° of recurrences r (may vary in each forward pass)



- Applying a recurrent computation block multiple times
- Each iteration refines the model's internal latent state
- Allows the model to perform **deeper computation dynamically at test time**



- Small model:
  - $(\ell_P = 1, \ell_R = 4, \ell_C = 1), h = 1024$

#### • Large model:

- $(\ell_P = 2, \ell_R = 4, \ell_C = 2), h = 5280$
- Looks not that big, but when recurrent block is iterated e.g. 32 times:

•  $2 + 4 \cdot 32 + 2 = 132$  layers

- MLP inner dimension is 17920
- $\bullet \ \Rightarrow 3.5B \ parameters$



$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{r \sim \Lambda} L\left(m_{\theta}(\mathbf{x}, r), \mathbf{x}'\right)$$

- $m \rightarrow$  model output
- $x \rightarrow$  sampled sequence
- $x' \rightarrow$  sequence x shifted left (i.e. the next tokens)
- $r \rightarrow$  number of recurrences



- Sample number of recurrent steps  $r \sim \Lambda$
- Truncated backpropagation through depth (k=8).







- opted for a dataset mixture that maximized the potential for emergent reasoning behaviors
  - heavily skewed towards code and mathematical reasoning data



- Vocabulary of 65536 tokens via BPE
- Packed in Sequences of length 4096



- Trained on Frontier supercomputer
- 800B tokens, 4096 GPUs, bfloat16 precision
- trained in 21 segments of up to 12 hours



- Im-eval-harness tasks
- **outperforms** the older Pythia series and is roughly **comparable** to the first OLMo 7B generation
- lags behind the later OLMo models
  - trained on larger, more carefully curated datasets



- Math Evaluation: e.g. GSM8k, MathQA
  - Outperforms all models except **OLMo-2** in mathematical reasoning
- Coding Evaluation: e.g. MBPP, HumanEval
  - Beats all general-purpose open-source models
  - Does not surpass specialized code models (e.g. StarCoder2)



- Non-recurrent model stagnates early
- Recurrent model is especially effective on math/coding tasks

| Model                        | Tokens ARC | -E ARC-C | HellaSwag | MMLU  | OBQA  | PiQA  | SciQ               | WinoGrande | GSM8K CoT          |
|------------------------------|------------|----------|-----------|-------|-------|-------|--------------------|------------|--------------------|
| Fixed-Depth Baseline         | 0.18T 46.4 | 42 26.96 | 37.34     | 24.16 | 29.60 | 64.47 | 73.20              | 51.78      | 1.82/2.20          |
| Ours, early ckpt, $(r = 32)$ | 0.18T 53.0 | 52 29.18 | 48.80     | 25.59 | 31.40 | 68.88 | <b>80.60</b>       | 52.88      | 9.02/10.24         |
| Ours, early ckpt, $(r = 1)$  | 0.18T 34.0 | 01 23.72 | 29.19     | 23.47 | 25.60 | 53.26 | 54.10              | 53.75      | 0.00/0.15          |
| Ours, $(r = 32)$             | 0.8T 69.9  | 91 38.23 | 65.21     | 31.38 | 38.80 | 76.22 | <b>93.50</b> 47.10 | 59.43      | <b>34.80/42.08</b> |
| Ours, $(r = 1)$              | 0.8T 34.3  | 39 24.06 | 29.34     | 23.60 | 26.80 | 55.33 |                    | 49.41      | 0.00/0.00          |



#### • Zero-Shot Adaptive Compute at Test-Time

• KL divergence-based **early exit rule**  $\rightarrow$  if KL-divergence between two successive steps falls below some threshold: stop iterating

#### • Zero-Shot KV-Cache Sharing

- normally: every layer has its own KV-cache
- recurrent block shares parameters:
  - $\rightarrow$  keeping only the last 16 steps



# • Zero-Shot Continuous Chain-of-Thought

• Instead of resetting latent state  $s_0$ 

 $\rightarrow$  carry over the latent state from the previous token  $e^{t+1} - e^{t}$ 

$$s_0^{\iota+1} = s_R^{\iota}$$

 $\rightarrow$  continuous stream of internal latent reasoning

## • Zero-Shot Self-Speculative Decoding

- draft model to propose tokens quickly, which a stronger model then verifies
- here: same model with fewer recurrent steps drafts tokens







#### • PCA reveals structures in latent reasoning:

- fixed points
- orbits
- directional drifts





| Latent Reasoning                   | Verbose Reasoning (CoT)        |  |  |  |  |
|------------------------------------|--------------------------------|--|--|--|--|
| model <b>"thinks"</b> via internal | focused on sequential verbal   |  |  |  |  |
| strategies                         | reasoning                      |  |  |  |  |
| no need for specialized training   | Requires carefully curated and |  |  |  |  |
| data                               | domain-specific CoT anno-      |  |  |  |  |
|                                    | tations                        |  |  |  |  |
| small context windows              | Needs long context windows     |  |  |  |  |
| more FLOPs per parameter           | Lower FLOPs per parameter      |  |  |  |  |
| Reduces memory footprint           | Higher memory usage due to     |  |  |  |  |
|                                    | extended token sequences and   |  |  |  |  |
|                                    | context handling               |  |  |  |  |



- Recurrent-depth LMs enable scalable reasoning
- Avoids CoT overhead, enables novel behaviors
- Promising direction for compute-efficient AI



# Thanks for your attention!

Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach

Jonas Geiping<sup>1</sup> Sean McLeish<sup>2</sup> Neel Jain<sup>2</sup> John Kirchenbauer<sup>2</sup> Siddharth Singh<sup>2</sup> Brian R. Bartoldson<sup>3</sup> Bhavya Kailkhura<sup>3</sup> Abhinav Bhatele<sup>2</sup> Tom Goldstein<sup>2</sup>

Conclusion