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The challenge
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The challenge: The right benchmark

• “Testing for a skill that is known in advance to system developers […] can be 
gamed without displaying intelligence in two ways: (1) unlimited prior 
knowledge (2) unlimited training data” (Chollet 2019, p. 20).

• Abstract Reasoning Corpus (ARC) is a benchmark to measure “human-like 
general intelligence” (Chollet 2019, p. 45).
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The challenge: Intelligence

• What should such a benchmark measure to capture human-like 
intelligence? What family of tasks would it address?
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The challenge: Intelligence

• François Chollet believes that humans are born with “cognitive priors”, which 
are used to deal with (novel) tasks. 
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The challenge: Intelligence

• François Chollet believes that humans are born with “cognitive priors”, which 
are used to deal with (novel) tasks. 

• An intelligence benchmark should capture these priors (Cholet 2019, pp. 48-50): 

a) Object priors:
Object cohesion (e.g., color and space continuity)
Object persistence (e.g., despite noise)
Object influence via contact

b) Goal-directedness prior (similar to time)
c) Numbers and counting priors
d) Basic geometry and topology priors (e.g., symmetries, being inside or outside..)
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The challenge: ARC-AGI-1

ARC benchmark addressing human priors (for comparison):

• The “intelligence” tests should be easy to solve for humans.
• The benchmark should control for knowledge about tasks, e.g., by tests 

unknown to the developers (private holdout set).
• The benchmark should be limited in terms of data (e.g., 600 training, 400 

evaluation instances) and compute (12 hours of Kaggle notebook with GPU 
access).
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The challenge: ARC-AGI-1
solutionexamples task
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• Few-shot learning benchmark



The challenge: ARC-AGI-1

• Tasks are provided with numerical 
representations.

• Each task allows 3 attempts.
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(Li et al. 2024, p. 1)



The approach
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The approach

• Li et al.  (2024) propose a combination of two models to solve ARC tasks:

Model 1 performing inductive program synthesis.
Model 2 performing transductive prediction.

• These two models are ensembled to make predictions on the test set.
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• From Devlin et al. (2017), auto-fill for Microsoft Excel:

• “In the program synthesis approach, we train a neural model which takes (𝐼1, 
𝑂1), ..., (𝐼𝑛, 𝑂𝑛) as input and generates P as output, token-by-token.” (Devlin et al. 
2017, p. 3)

The approach: Program synthesis
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Input Output

𝐼1= January 

𝐼2 = February 

𝐼3 = March 

𝑂1 = jan

𝑂2 = feb

𝑂3 = mar

𝐼𝑛 𝑂𝑛 

P = ToCase(Lower, SubStr(1,3))



The approach: Induction
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(Li et al. 2024, p. 2)

Llama3.1-8B-instruct



The approach: Transduction
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(Li et al. 2024, p. 2)

Llama3.1-8B-instruct

(Li et al. 2024, p. 34)

The tasks are translated into 
lingual representations.



The approach: Prediction
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The two models are ensembled, to make predictions on ARC test 
sets:

1st step:

2nd step if 𝑭 =  ∅ : 



The approach: Prediction
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The two models are ensembled, to make predictions on ARC test 
sets:

Programs = Functions

Test-time budget of B functions 
(e.g., 10k samples)

If function works 
on few shot 
examples, it can 
be used for the 
test.

1st step:

2nd step if 𝑭 =  ∅ : 



The approach: Synthetic data
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• To train their models, Li et al.(2024) need data!
• They generate a synthetic dataset, starting with 100 manually written 

solutions (seeds) for 100 ARC problems.



The approach: Synthetic data
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(Li et al. 2024, p. 4)



New seeds are then generated by:

• prompting an LLM (GPT-4) with seed natural language description to create a 
new seed from in-context learning;

• retrieving with RAG similar descriptions from existing seeds to generate 
programs for new description (with GPT-4o-mini);

• generating new inputs for the function, producing new input-output samples.

The approach: Synthetic data
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Further scaling:

• Li et al. (2024) eventually synthesize 200k examples from 160 seeds.

• Li et al. (2024) add further synthesized input-output samples from other 
papers on ARC (adding up to 400k).

The approach: Synthetic data
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The models are trained based on the synthetic data with meta-learning 
minimizing few-shot problems:

The approach: Training
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• The transduction model is additionally trained with Test Time Training (TTT) 
and reranking.

• TTT: self-supervised input transformation (rotation, permuting colors); 
essentially a second model-head that is added to the existing 
transductive model (Sun et al.  2020).

• Reranking: predictions from multiple augmented (grid transposed, color 
permutated) training samples as further feedback signal to the model.

The approach: Training
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Results
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The accuracy of humans, solving ARC-challenges is:

Average: 60.2%
Best: 97.8%

Li et al. (2024) models after 200k training samples:

Results: Performance
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Budget (B) of maximally 10k 
generated functions, pick most 
frequent (majority) solution.



Li et al. (2024) models after 400k training samples:

However, the ARC challenge comes with limited compute…

Results: Performance
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≈ average human (60.2%)



Li et al.’s (2024) model performance with limited compute (12 hours of Kaggle 
notebook with GPU access):

Results: Performance
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• Induction and transduction work complementary, even after further 
controlled experiments (e.g., different results due to different model 
initializations). 

Results: Observations
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(Li et al. 2024, p. 5)



• Models surpass humans on harder problems, but struggle with “easy” ones:

Results: Observations

29(Li et al. 2024, p. 9)



Results: Observations

• More (>=160) seeds did not improve the results, but performance scales with 
synthetic data.
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(Li et al. 2024, p. 6)



Outlook
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• Li et al. (2024) combine neural with symbolic problem-solving strategies 
since the generated Python programs are deterministic and rule-based.

• Cognitive background: fast nonverbal intuitions vs. deliberative conscious 
thought (e.g., Kahnemann (2011)).

Outlook: Advancements
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• Program synthesis with Python code instead of domain specific languages 
(DSL) as in Devlin et al. (2017) is introduced.

• Li et al. (2024) propose domain specific libraries that should be used for 
program synthesis.

Outlook: Advancements
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Surprising complementary results:

• Python (output from induction model) and the Transformer model 
(transduction model) are theoretically universal function approximators.

Outlook: Critique
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• Li et al. (2024) have no formulated hypothesis of what a model should be like 
to succeed in ARC-like challenges.

• It seems that they ensemble a variety of techniques and models and still 
generate a lot of training data to achieve high performance.

Outlook: Critique
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Outlook: Unlimited compute

36OpenAI O3 performance on the ARC challenge (arcprize.org/blog/oai-o3-pub-breakthrough)



Thank you
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• Critique of ARC:  Given the few shot examples, is induction (in the classical 
sense) a good measure for intelligence? 

• What about deductive thinking?

Supplementary material
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Supplementary material

• What about other models (VLMs or LRMs)?
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Supplementary material

• Intelligence according to Chollet:

The intelligence of a system is a measure of its skill-acquisition efficiency over a 
scope of tasks, with respect to priors, experience, and generalization difficulty. 
(my highlighting, Chollet 2019, p. 27)

40(Chollet 2019, p. 41)(Chollet 2019, p. 12)



Supplementary material

• Reranking in transduction: 
“For ranking, we aggregate candidates across all transformations. For each 
unique candidate y, we track both its frequency of appearance freq(y) across 
different transformations and its average beam search score E [sT(y)]. These 
are then ranked with frequency taking precedence over average score.“(Li et al. 
2024, p. 46)
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