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Think Step by Step to Boost Reasoning

LLMs are autoregressive next-word-predictors. With a direct question
prompt, the model may be able to generate a correct answer, but also
can struggle with complex reasoning required by the question.

Prompting the model with instructions such as Let’s think step by
step (zero-shot) or demonstrations (few-shot) enables it to generate
intermediate computations (thoughts).

Empirically, the intermediate computations called called Chain of
Thought (CoT) can improve the reasoning performance.
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Example: How many Cakes?

Prompt without CoT

If a baker makes 30 cakes and sells 2/3 of them, how many cakes did he
sell?

Answer: The baker sold 20 cakes.
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Example: How many Cakes?

Prompt without CoT

If a baker makes 30 cakes and sells 2/3 of them, how many cakes did he
sell?

Answer: The baker sold 20 cakes.

Prompt with CoT

If a baker makes 30 cakes and sells 2/3 of them, how many cakes did he
sell? Let’s break this down step-by-step.

Step 1: Identify the total number of cakes: 30.

Step 2: Identify the fraction sold: 2/3.

Step 3: Calculate 2/3 of 30. (2/3) * 30 = 20.

Final Answer: The baker sold 20 cakes.
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Intuition, Beyond Intuition

Intuitively, we imagine that a model works like humans, so engaging
CoT is to break a task into smaller subtasks, which relieves the
reasoning pressure at each step.

However, what really happens under the hood, in those transformer
blocks and layers?

Plenty of works had been done before to prove that CoT does equip
models with additional reasoning abilities, but they:

only looked at the model’s behavior, instead of the internal mechanism
studied toy models instead of real LLMs
assumed CoT was used
lacked causality evidence
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The Aim of the Work

This paper studied the reasoning mechanism of a real LLM (Llama-2 7B).
It specifically includes:

identifying which attention heads are responsible for a certain subtask

checking whether the model grasped relations between entities

exploring which part of knowledge the model attends to

tracing the information flow through attention heads
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Quick Recap: Attention Head

In the self-attention mechanism, for an input X , the attention scores
are calculated by:

Q = XWQ ,K = XWK ,V = XWV

Attention(Q,K ,V ) = softmax(QKT
√
dK

)V

A set of matrices Q, K and V captures certain information from the
input. However, in order to sufficiently represent it, we train multiple
sets of matrices, where each captures a certain aspect of the input
information. Each set of computed scores is called an attention
head.

headh = Attention(XW
(h)
Q ,XW

(h)
K ,XW

(h)
V )

After concatenation, the attention heads will be projected back to the
token space.

Multihead(Q,K ,V ) = Concat(head1, ..., headh, ..., headn)WO
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Quick Recap: Residual Stream

Models with deep layers often suffer from vanishing gradients and
being unable to preserve information. In order to solve that, we can
add the original input to the layer output after each forward
computation, called residual connection, or residual stream.

Output(X ) = X + Layer(X ), where X is the input from the last layer.

Apart from benefiting training, an advantage that comes in handy is
that we can extract the token representations after each layer,
especially after each transformer block. This is extremely useful in
investigating as well as manipulating the information flow at a given
layer.
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Fictional and False Ontology

LLMs are trained with huge datasets that contain rich knowledge.

This important feature, however, will disturb the experiment, because
we want to exclude the possibility that the model answers based on
the pretraining knowledge, instead of the context.

To achieve this, we invent some entity names that don’t make sense,
called Fictional Ontology, so that the model won’t be able to cheat
with pretraining knowledge.

Similarly, False Ontology is a statement that is false in reality, but
formally valid.
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This important feature, however, will disturb the experiment, because
we want to exclude the possibility that the model answers based on
the pretraining knowledge, instead of the context.

To achieve this, we invent some entity names that don’t make sense,
called Fictional Ontology, so that the model won’t be able to cheat
with pretraining knowledge.

A fictional ontology question

Tumpuses are bright. Lempuses are tumpuses. Max is a lempus.
True or False: Max is bright. → True

Similarly, False Ontology is a statement that is false in reality, but
formally valid.
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Fictional and False Ontology

Similarly, False Ontology is a statement that is false in reality, but
formally valid.

A false ontology question

Mammals can fly. Pigs are mammals. Peppa is a pig.
True or False: Peppa can fly. → True
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Activation Patching

During mechanism study, we want to figure out for which function a
certain transformer block at a layer is responsible. Activation
Patching can give us clue.

The general idea is as follows:

Given a task, e.g., John and Mary went to the park. John passed the
bottle to [?], a working model should answer correctly: Mary.
Hypothesis: blockj is responsible for moving the name
information.
Copy the token representation xMary

j at that layer.
Corrupt the input: Change Mary to Anne in the prompt. The model
answer becomes Anne.
Replace xAnnej with xMary

j .
If the model outputs Mary again, then our hypothesis is correct!
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Knockout

Knockout is to eliminate the function of a node by assigning a
non-discriminative value to it.

A naive way of knockout is to set the value of corresponding nodes to
zero, but this can be destructive to other computation.

Using the False Ontology mentioned above, this paper constructed:

xKnockj = Meani ({x ij |si ∈ S ∈ DFalse}), where DFalse denotes the set of
false ontologies.
We can imagine this as information from a reversed world, which will
confuse the model.
To insert this false information:
sKnocki = argmax

x i
logit

LMl
j,k(x

i
logit |S , y l

j,k = xKnockj ), where j ,k and l denote

the lth token at the kth head of the jth layer.
Don’t panic. The intuition: Push the node to be eliminated toward the
wrong/unreal direction as possible.
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Three Types of Subtasks

From here, we will dive into the experiments. First of all, in order to
make the experiments understandable, we need to construct a
human-friendly logic framework in Fiction Ontology.

In other words, subtasks are categorized into three types:
Decision-Making, Copying and Induction.

Decision-Making - The model decides on the path of reasoning to
follow.
Copying - The LM needs to copy key information given in the input to
the output.
Induction - The LM uses a set of statements to infer new relations.
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Three Types of Subtasks

Figure: Task Composition of a Fictional Ontology Question
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Identify the Working Heads

Since we have defined each token as a type of subtask, it is now
possible to split heads into three subsets respectively responsible for
each type.

More specifically, we will calculate a responsibility score for each
subtask type across heads, using techniques including Activation
Patching.

***Missing math will be completed later.***
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Identify the Working Heads

Ideally, we would be glad to see heads clearly differentiated by subtask
types. However, the reality rejects our hypothesis.

It is worth noting that:
Subtask type—responsibility is shared across many heads.
Induction subtasks require the fewest number of heads.
(Argument: Induction inherently includes decision and copying)
Task 4 engages nearly all attention heads, indicating a high degree of
distributed processing.

Figure: Accuracy (when the rest of heads are knocked out) and Fraction of Heads
Involved over all subtasks of Different Sets of Heads
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Mixed Tokens as Representation of Relations

Now we want to know whether the model really grasps the relations
between entities.

First of all, we define the value of a relation as negative/-1 (A is not
B), neutral/0 (no relation) and positive/1 (A is B).

Since we are using fictional ontology, the model is not likely to
retrieve a relation from its pretraining knowledge.

According to attention mechanism, token representations will be
mixed during self-attention.

If there exist three unique patterns in two token representations that
are distinguishable given a residual stream, it means the model has
successfully learned three above-mentioned relations.

Does the Model Understand Relations between Entities? 18 / 26
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successfully learned three above-mentioned relations.
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Classification as a Metric

With the rationales above, we define the model’s level of capturing
relations as the accuracy of a well-trained classifier with two
concatenated mixed tokens.

The classifier is built with stacked linear layers and a RELU activation
layer. We can assume that it will capture any distinct signal given a
setup.
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Classification as a Metric

Figure: How does the LLM mix information among tokens according to ontology?
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Classification as a Metric

Notably, the mixing level increases with the depth of decoder blocks
until the end, where it drops drastically due to the final decoding.

Few-shot learning tends to be less stable with respect to token mixing.
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When does the Model rely on Context?

Now we will explore which layer does the model start attending to the
context instead of just relying on patterns from pretraining.

For a token si in the context and an attention head hj ,k , we can
unembed the head to find the predicted token ŝi

j ,k . If < si , ŝi
j ,k > is

a bigram in the context, then we consider the head as attending to
the context.

It should be noted that applying unembedding projection typically
corresponds to Bigram modeling (Elhage et al., 2021). Therefore,
when we map any intermediate representation (attention output,
residual stream, etc.), we essentially retrieve the token that is most
likely to follow.

This is why we use si instead of si−1!

Naturally, a context-abidance score is defined as

cj ,k = Number of tokens where <si ,ŝi
j,k> is a bigram in S

Number of tokens considered .
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j ,k > is

a bigram in the context, then we consider the head as attending to
the context.

It should be noted that applying unembedding projection typically
corresponds to Bigram modeling (Elhage et al., 2021). Therefore,
when we map any intermediate representation (attention output,
residual stream, etc.), we essentially retrieve the token that is most
likely to follow.

This is why we use si instead of si−1!

Naturally, a context-abidance score is defined as

cj ,k = Number of tokens where <si ,ŝi
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When does the Model rely on Context?

Figure: When does the LLM start following the context?
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When does the Model rely on Context?

Fictional ontology ensures that most bigrams come from the context.

Therefore, we are convinced that the model starts attending to
contextual information only at deeper depths (starting from the 16th
layer in this setup).

No correlation is observed between context abidance and subtasks.
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How is the answer written?

Similarly, we can apply head unembedding to investigate which heads
write the answer to a given subtask.

Here, the head that writes the answer is defined as the head whose
unembeded token is the answer token. Probabilities will also be
recorded.
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How is the answer written?

Figure: Which heads are writing the answer?
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How is the answer written?

There are multiple heads writing to the same answer at the same
layer, which indicates redundancy in the model.

Most answer writing starts from the 16th layer.

Again, subtasks and heads’ answer writing are irrelevant.
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Where does the answer come from?

Given the existence of multiple answer writers, we want to know
whether they come from the same source.

To trace the information flow, a recursive strategy is used:

Start at an answer-writing head
Look at where this head is attending
Project those residual streams back into tokens
Find out which earlier head wrote that content
Repeat recursively
Until one of the following cases is met:

Reach a head in the first decoder layer (i.e., bottom of the network)
Reach the first token in the prompt
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Where does the answer come from?

Figure: Where do the answer-writing heads collect their answers from?
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Where does the answer come from?

There are different heads writing answers from different sources

Answer source is subtask-sensitive.

No generated-context-source in subtask 0-3, because no answer token
is present in this stage.
Similarly, subtask 6 and 71 does not include any question context.
For subtasks 4, 5, 8, and 9, there are noticeable heads writing from a
generated context source. This is a proof that the model is actually
referring to CoT.

1Note that there is a typo in the graph (Subtask 3 → Subtask 7).
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Findings

Despite varying reasoning needs across CoT stages, the model reuses
similar functional components, structured like induction circuits
(networks of attention heads)

Attention heads facilitate information flow between related tokens,
forming distinct representations—starting early and influenced by
in-context examples.

Multiple neural pathways generate answers in parallel, with different
heads contributing to the final token in the residual stream.

These pathways source answers from the question, few-shot, and
generated CoT contexts—confirming that LLMs actively use
CoT-generated context when reasoning.

A functional rift occurs mid-model (i.e., at the 16th layer in LLaMA-2
7B), marking a shift from bigram-based reasoning to in-context
processing; token-mixing and erroneous few-shot answer retrieval
happen before this rift, while answer-writing heads emerge after it.
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Limitations and Future Research

This research focused mostly on few-shot learning CoT, while
zero-shot learning CoT needs to be studied separately.

With fictional ontology, this work skiped the function of MLP, which
mainly serves as a pretraining knowledge retriever, and only explored
transformer blocks. However, the mechanism of MLP needs further
research as well.
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