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Overview of Benchmarking in AI

LLMs have 
demonstrated 

exceptional 
performance on 

standard benchmarks.

current benchmarks are 
reaching performance 
saturation, with many 
models scoring near-

perfect.

This plateau limits our 
ability to assess the 

true capability of LLMs.
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What is Benchmark Saturation?

• Benchmark saturation occurs 
when performance reaches 
near-perfect levels, leaving little 
room for further model 
improvement.

• In most cases, models achieve 
accuracy over 90% on common 
benchmarks like MMLU.
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Humanity’s
Last Exam

(HLE)

HLE was introduced to address the saturation 
problem by providing a more complex, multi-

modal benchmark.

HLE consists of a community-contributed 
question bank that has been vetted.
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LLMs often don't do well 
on tasks that require 
composition into smaller 
subtasks.

In this case there is a 
chain of relations that 
depend on the previous 
result.
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Dataset 
Composition

A mix of question types: 76% exact-match and 
24% multiple-choice (MCQ).
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Evaluation Protocol

Zero-shot Chain-of-Thought (CoT) prompts were used 
to assess model performance.

The structure of prompts includes: Explanation, 
Answer, and Confidence levels.

O3-mini judge was employed to evaluate equivalence 
across different models and ensure consistency.
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Zero-Shot Chain-of-Thought 
Guidance

• Encouraging Stepwise Thinking:

Explanation:
Step 1: Identify relevant facts...
Step 2: Apply formula...
Step 3: Simplify result...
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Design of Dual Prompt 
Templates

• Multiple-Choice Questions

Your response should be in the following format:

Explanation: {your explanation for your answer 
choice} 
Answer: {your chosen answer} 
Confidence: {your confidence score between 0% 
and 100% for your answer}

Your response should be in the following format:

Explanation: {your explanation for your final 
answer} 
Exact Answer:{your succinct, final answer} 
Confidence: {your confidence score between 0% 
and 100% for your answer}

• Exact-Match Questions
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Structured Judge Response
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Gating & Filtering Process
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Difficulty Check

Difficulty gating criteria:

• Exact-match questions require every model to answer 
incorrectly

• Multiple-choice questions permit at most one model to guess 
correctly by chance, eliminating “prop questions” prone to 
lucky hits.
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Review and 
Refinements

• Questions should usually (but do not always need to) be at a 
graduate / PhD level or above. （For STEM）

• Questions should ask for something precise and have an 
objectively correct, univocal answer.

• Questions should be original and not derived from textbooks or 
Google.

• Questions need to be in English.
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Expert Approval

• Recruitment of students from top United States universities 
to fully solve a sample of HLE questions. 、

• Errors flagged routed among organizers, original question 
authors, and auditors until consensus reached. Audit data 
used to further refine the dataset.
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Expert Approval
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Searchability & Post-
Release Community 
Audit

• Dual-model comparison: For questions that passed the first two rounds, 
examine whether retrieval-enabled models (e.g., GPT-4o search, 
Perplexity Sonar) answer correctly with search enabled but fail with 
search disabled. Questions showing “retrieval-enabled model correct + 
non-retrieval model incorrect” undergo manual review to confirm that a 
simple online query suffices; otherwise, those questions receive 
removal or revision.

• Community feedback: Upon public release, a “crowdsourced bug 
bounty” program opens for reports of label errors or question 
ambiguities; organizers and original authors jointly confirm and correct 
reported issues.
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Motivating HLE

HLE introduces 
2,500 questions 

spanning over 100 
subjects

It challenges 
models by 

including multi-
modal elements 

(text and images)
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Multimodal Analysis

• Multimodal questions (Text + image): only cutting-edge, image-
capable multimodal LLMs (e.g., GPT-4O, GEMINI 1.5 PRO, 
CLAUDE 3.5 SONNET, O1) for difficulty check.

• Text-only questions: supplementation with lightweight, non-
vision models (O1-MINI, O1-PREVIEW) alongside multimodal 
LLMs to evaluate solvability under absence of visual cues.
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Multimodal question example
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Performance Across Domains

• HLE results show significant variability in performance across different domains 
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Insights
from

Domain 
Breakdown

• Understanding these gaps helps to 
inform the future development of 
domain-specific AI models.

• Targeted training and fine-tuning in 
weaker domains are needed to 
bridge these gaps.
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The accuracy 
of LLMS in 
HLE
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Evaluation Metrics

Accuracy was measured as the main metric for model 
performance.

RMS calibration error was used to assess the 
reliability of the models' confidence in their 
responses.
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Computation Pipeline
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Token Usage in 
Reasoning Models

• Reasoning models like GPT-4o 
generate more than 8,000 tokens per 
question.

.
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• Despite generating fewer tokens, 
non-reasoning models perform 
less accurately.

• The trade-off between token
generation and accuracy is crucial
in understanding LLM efficiency



Reasoning

Evaluation Metrics



Non-Reasoning

Evaluation Metrics



Token Efficiency

• High token usage limits the practicality of reasoning models in 
real-world applications (e.g., cost, computational time).

• In ultra-challenging tasks such as HLE, Token Efficiency of 
reasoning models falls below that of lightweight non-reasoning 
models, indicating that mere extension of reasoning length 
does not yield proportional performance gains.

Token Efficiency = Accuracy / Average Tokens 
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Closed-Ended Task Limitations

• HLE primarily consists of closed-ended questions, limiting the 
scope for evaluating open-ended creativity or reasoning.

• This closed nature may not fully capture the range of a model’s 
abilities.

30

Evaluation Limitation



Evolving Benchmarks

“There’s a big gulf between what it means to take an exam and 
what it means to be a practicing physicist and researcher. Even an 
A.I. that can answer these questions might not be ready to help in 
research, which is inherently less structured.”
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Summary slides
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Shows leading frontier LLMs score below 15% accuracy and suffer over 
70% RMS calibration error on HLE, revealing major deficiencies in 
expert-level reasoning and confidence estimation 

Establishes a rigorous, transparent framework for precisely measuring AI 
capabilities, empowering evidence-based tracking of model progress by 
researchers, journalists, and policymakers 


