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Abstract

This paper presents an innovative, complex
approach to semantic verb classification that
relies on selectional preferences as verb prop-
erties. The probabilistic verb class model un-
derlying the semantic classes is trained by
a combination of the EM algorithm and the
MDL principle, providing soft clusters with
two dimensions (verb senses and subcategori-
sation frames with selectional preferences) as
a result. A language-model-based evaluation
shows that after 10 training iterations the verb
class model results are above the baseline re-
sults.

Given that the creation of semantic verb classi-
fications is not an end task in itself, but depends
on the application scenario of the classification, we
find various approaches to an automatic induction of
semantic verb classifications. For example, Siegel
and McKeown (2000) used several machine learn-
ing algorithms to perform an automatic aspectual
classification of English verbs into event and sta-
tive verbs. Merlo and Stevenson (2001) presented
an automatic classification of three types of English
intransitive verbs, based on argument structure and
heuristics to thematic relations. Pereira et al. (1993)
and Rooth et al. (1999) relied on the Expectation-
Maximisation algorithm to induce soft clusters of

1 Introduction verbs, based on the verbs’ direct object nouns. Sim-

ilarly, Korhonen et al. (2003) relied on the Informa-

In recent years, the computational linguistics com_

A . . tion Bottleneck (Tishby et al., 1999) and subcate-
munity has developed an impressive number of se-

mantic verb classifications, i.e., classifications thaqorlsatlon frame types to induce soft verb clusters.
generalise over verbs according to their semantic This paper presents an innovative, complex ap-
properties. Intuitive examples of such classificaproach to semantic verb classes that relies on se-
tions are the MTION WITH A VEHICLE class, in- lectional preferences as verb properties. The un-
cluding verbs such adrive, fly, row etc., or the derlying linguistic assumption for this verb class
BREAK A SOLID SURFACE WITH ANINSTRUMENT model is that verbs which agree on their selec-
class, including verbs such dwseak, crush, frac- tional preferences belong to a common seman-
ture, smashetc. Semantic verb classifications ardic class. The model is implemented as a soft-
of great interest to computational linguistics, specificlustering approach, in order to capture the poly-
cally regarding the pervasive problem of data sparssemy of the verbs. The training procedure uses the
ness in the processing of natural language. Up tBxpectation-Maximisation (EM) algorithm (Baum,
now, such classifications have been used in applica972) to iteratively improve the probabilistic param-
tions such as word sense disambiguation (Dorr areters of the model, and applies the Minimum De-
Jones, 1996; Kohomban and Lee, 2005), machirgeription Length (MDL) principle (Rissanen, 1978)
translation (Prescher et al., 2000; Koehn and Hoanty induce WordNet-based selectional preferences for
2007), document classification (Klavans and Kargrguments within subcategorisation frames. Our
1998), and in statistical lexical acquisition in genimodel is potentially useful for lexical induction
eral (Rooth et al., 1999; Merlo and Stevenson, 2001e.g., verb senses, subcategorisation and selectional
Korhonen, 2002; Schulte im Walde, 2006). preferences, collocations, and verb alternations),



and for NLP applications in sparse data situations. correspond to a set afommunicatiornverbs),
In this paper, we provide an evaluation based on a  with probability p(cs),
language model.

The remainder of the paper is organised as fol-
lows. Section 2 introduces our probabilistic verb
class model, the EM training, and how we incor-
porate the MDL principle. Section 3 describes the
clustering experiments, including the experimental
setup, the evaluation, and the results. Section 4 re-
ports on related work, before we close with a sum-

2. selecting a verly, here the verlspeak from
clustercs with probability p(speakes),

3. selecting a subcategorisation franfe here
subj-pp.to with probability p(subj-pp.tdcs);
note that the frame probability only depends on
the cluster, and not on the verb,

mary and outlook in Section 5. 4. selecting a WordNet conceptfor each argu-
ment slot, e.g. personfor the first slot with

2 Verb Class Model probability p(persorics, subj-pp.tg1) and so-

21 Probabilistic Model cial group for the second slot with probability

social groujpes, subj-pp.tg2),
This paper suggests a probabilistic model of verb ol groufrs Ipp-102)

classes that groups verbs into clusters with simi- 5. selecting a wordy; to instantiate each con-
lar subcategorisation frames and selectional prefer- cept as argument; in our example, we
ences. Verbs may be assigned to several clusters might choose professor for person with
(soft clustering) which allows the model to describe  probability p(professofperso) and au-

the subcategorisation properties of several verbread- dience for social group with probability
ings separately. The number of clusters is defined p(audiencésocial group.

in advance, but the assignment of the verbs to the , , _

clusters is learnt during training. It is assumed thaf "€ Model contains twaidden variables namely

all verb readings belonging to one cluster have simihe clusters:and the selectional preferencesn or-

lar subcategorisation and selectional properties. THIET {0 obtain the overall probability of a given verb-
selectional preferences are expressed in terms of gdgument tuple, we have to sum over all possible val-
mantic concepts from WordNet, rather than a set df€S Of these hidden variables. _
individual words. Finally, the model assumes that |N€ assumption that the arguments are indepen-
the different arguments are mutually independent fdf€nt of the verb given the cluster is essential for ob-
all subcategorisation frames of a cluster. From thiNing a clustering algorithm because it forces the
last assumption, it follows that any statistical depenEM @lgorithm to make the verbs within a cluster as

dency between the arguments of a verb has to be esimilar as possiblé. The assumption that the differ-
plained by multiple readings. ent arguments of a verb are mutually independent is

The statistical model is characterised by the follMPOrtant to reduce the parameter set to a tractable

lowing equation which defines the probability of a>'%€
verb v with a subcategorisation framg and argu- The fact that verbs select for concepts rather than
mentsay., ... a, individual words also reduces the number of param-

a eters and helps to avoid sparse data problems. The

(v, fra1, oy n,) = Zp(c) p(le) p(fle) * gppllcatlon of the MDL principle guarantees that no
P important information is lost.

ny The probabilities p(r|c, f,i) and p(a|r) men-
11> p(rle. £.9) p(ailr) tioned above are not represented as atomic enti-
i=1r€R ties. Instead, we follow an approach by Abney

The model describes a stochastic process which gen-1The EM algorithm adjusts the model parameters in such a
erates a verb-argument tuple likepeak, subj-pp.to, way that the probability assigned to the training tuples &m
; imised. Given the model constraints, the data probabikty c
professor, audiengeby L ; o )
only be maximised by making the verbs within a cluster as sim-
1. selecting some cluster e.g. ¢ (Which might ilar to each other as possible, regarding the required aggisn



and Light (1999) and turn WordNet into a Hidden(3) For each verbw in cluster ¢, we add a rule
Markov model (HMM). We create a new pseudo- V. — v with probability p(v|c).

concept for each WordNet noun and add it as a hyyy or each subcategorisation franfieof clustere
ponym to each synset containing this word. In ad- with lengthn, we add a rule A— f R, ;1 entity

dition, we assign a probability to each hype_r_n_ymy— . Re_f.m.entity With probability p(f|c).
hyponymy transition, such that the probabilities of N
the hyponymy links of a synset sum up to 1. Thdd) _For each tra_nsmon from a nodeto a noder’

pseudo-concept nodes emit the respective word with I the selectional preference model for slaif

a probability of 1, whereas the regular concept nodes the subcategorisation framg of clusterc, we
are non-emitting nodes. The probability of a path addarule Ry;, — Rz, whose probability
in this (a priori) WordNet HMM is the product of is the tr.ansmon probability from to " in the
the probabilities of the transitions within the path. ~ "espective WordNet-HMM.

The probability p(a|r) is then defined as the sum(6) For each terminal nodein the selectional pref-

of the probabilities of all paths from the concept erence model, we add arule R; , — R, whose
to the worda. Similarly, we create a partial Word- probability is 1. With this rule, we “jump” from
Net HMM for each argument sldt, f, i) which en- the selectional restriction model to the corre-

codes the selectional preferences. It contains only sponding node in the a priori model.

the WordNet concepts that the slot selects for, a?—7) For each transition from a nodeto a noder”
cording to the MDL principle (cf. Section 2.3), and in the a priori model, we add a rule,R R,.
the dominating concepts. The probabilti|c. /. 7) whose probability is the transition probability

is the total probablllty of all paths from the top-most from 1 to ' in the a priori WordNet-HMM.
WordNet concepentity to the terminal node.
(8) For each word node in the a priori model, we

2.2 EM Training add a rule R — a whose probability is 1.
The model is trained on verb-argument tuples 0%

the form described above, i.e., consisting of a ver ) . .
. . (speak subj-pp.to professor audiehceeferring to
and a subcategorisation frame, plus the nomina . : ,
heads of the arguments. The tuoles may be ecluster3and one possible WordNet path, is shown in
g ' P y )r&igure 1. The connections withiR3 (R3. ... entity—
tracted from parsed data, or from a treebank. Be- ) and within R (R e B
cause of the hidden variables, the model is trained®person/group ; .pel’“””/f.m“?
iteratively with the Expectation-Maximisation algo—Of”;‘l‘]{;sts‘”‘/g;c?ggcgz]crle(%r trcésseg;i/rglla applications
rithm (Baum, 1972). The parameters are randomly yp » fesp Y-
initialised and then re-estimated with the Inside- TOP
Outside algorithm (Lari and Young, 1990) which is / \
an instance of the EM algorithm for training Proba- Vs As
bilistic Context-Free Grammars (PCFGSs). ! . // \
The PCFG training algorithm is applicable here?Peak SUbI-PP-10 R subs—pp.to.t.entity Fs,suvi—pp.to 2.entity
because we can define a PCFG for each of our mod- ! !

R3,subj—pp4to,l,pe'rson R3,subj—pp4to,2,group

els which generates the same verb-argument tuples | |

ased on the above definitions, a partial “parse” for

with the same probability. The PCFG is defined as Rperson Ryroup
follows: | |

B Rprofes.sor Raudience
(1) The start symbol is TOP. | |
(2) For each cluster, we add a rule TORP- V. A. professor audience

whose probability i(c).
P yile) Figure 1: Example parse tree.

2Arguments with lexical heads other than nouns (e.g., sub- L. . Lo o
categorised clauses) are not included in the selectiomdépr 1 N€ EM training algorithm maximises the likelihood

ence induction. of the training data.



2.3 MDL Principle The probability of a noum(n) is determined by di-
A model with a large number of fine-grained con-viding the total probability of the concept class the
cepts as selectional preferences assigns a highiegun belongs top(concept), by the size of that
likelihood to the data than a model with a small numclass, |concept|, i.e., the number of nouns that are
ber of general concepts, because in general a largégminated by that concept:
number of parameters is better in describing train- _ p(concept)
ing data. Consequently, the EM algorithm a pri- p(n) = |concept]
ori prefers fine-grained concep'ts bUt_.dL.Je to sparslehe higher the concept within the hierarchy, the
data problems — tends to overfit the training data. In . .

. . . more nouns receive an equal probability, and the
order to find selectional preferences with an appro- .

. . o . greater is the data length.
priate granularity, we apply the Minimum Descrip- " . .
. e . The probability of the concept class in turn is de-
tion Length principle, an approach from Information . g
) o termined by dividing the frequency of the concept

Theory. According to the MDL principle, the model classf( £) by the sample size:
with minimal description lengthshould be chosen. concept) By P '
The description length itself is the sum of tdel p(concept) = f(concept)’
length and thedata length with the model length S|

defined as the number of bits needed to encode tﬂﬁheref(concept) is calculated by upward propaga-
model and its parameters, and the data length dgon of the frequencies of the nominal lexemes from
fined as the number of bits required to encode thge data sample through the hierarchy. For exam-
training data with the given model. ACCOl’ding t0p|e, if the noung_joﬂ‘ee’ tea, mi”appeared with fre-
coding theory, an optimal encoding usesog2p  quencie5, 50, 3, respectively, within a specific ar-
bits, on average, to encode data whose probabiliggument slot, then their hypernym concégtverage
is p. UsuaIIy, the model Iength increases and th@,oukj be assigned a frequency T, and thes&'8
data length decreases as more parameters are adgesfilild be propagated further upwards to the next hy-
to a model. The MDL principle finds a compromisepernyms, etc. As a result, each concept class is as-
between the size of the model and the accuracy @fgned a fraction of the frequency of the whole data
the data description. set (and the top concept receives the total frequency
Our selectional preference model relies on Li an@f the data set). For calculatingconcept) (and the
Abe (1998), applying the MDL principle to deter- gyerall data length), though, only the concept classes
mine selectional preferences of verbs and their argyyithin the cut through the hierarchy are relevant.
ments, by means of a concept hierarchy ordered by Our model uses WordNet 3.0 as the concept hier-
hypernym/hyponym relations. Given a set of noungrchy, and comprises one (complete) a priori Word-
within a specific argument slot as a sample, the apget model for the lexical head probabilitiega|r)
proach finds the cétin a concept hierarchy which and one (partial) model for each selectional proba-

minimises the sum of encoding both the model angnity distribution p(r|c, f, 1), cf. Section 2.1.
the data. Thenodel length (ML)s defined as

k 2.4 Combining EM and MDL
ML = 3 * logs |5,

The training procedure that combines the EM train-
with k& the number of concepts in the partial hieraring with the MDL principle can be summarised as
chy between the top concept and the concepts in thelows.
cut, and|S| the sample size, i.e., the total frequency . _
of the data set. Theata length (DL)s defined as 1. The probabilities of a verb class model with
_ classes and a pre-defined set of verbs and frames
DL——Zloggp(n). o ;
nes are initialised randomly. The selectional preference

_ _ _ models start out with the most general WordNet con-
3A cutis defined as a set of concepts in the concept hier:

archy that defines a partition of the "leaf” concepts (thedstv cept only, i.e., the partial WordNet hierarchies un-

concepts in the hierarchy), viewing each concept in the sut £€rlying the probabilitiep(r|c, f,4) initially only
representing the set of all leaf concepts it dominates. contain the concept for entity.



2. The model is trained for a pre-defined nummaximised based on the frequency estimates ob-
ber of iterations. In each iteration, not only thetained in step (b).

model probabilities are re-estimated and maximised

(as done by EM), but also the cuts through the cor38 Experiments

cept hierarchies that represent the various selectionaar%‘

reference models are re-assessed. In each iteration, . ) ,
P or which WordNet exists, and for which the Word-

the following steps are performed.
g step P Net functions provided by Princeton University are

(@) The partial WordNet hierarchies that representy qijapie For the purposes of this paper, we choose
the selectional preference models are expanded I‘:(hglish as a case study.

include the hyponyms of the respective leaf con-
cepts of the partial hierarchies. l.e., in the firstiterag 1 Experimental Setup
tion, all models are expanded towards the hyponymF

. . . . he input data for training the verb class mod-
of entity, and in subsequent iterations each selec- : o
. . . els were derived from Viterbi parses of the whole
tional preference model is expanded to include thg . . . -
ritish National Corpus, using the lexicalised PCFG

h f the leaf in th rtial hi hi .
yponyms otthe fea npdeg n the partia’ hierarc .Iefc'or English by Carroll and Rooth (1998). We took
resulting from the previous iteration. This expansion

) only active clauses into account, and disregarded
step allows the selection models to become more and

. - iliary and modal verbs as well as particle verbs
more detailed, as the training proceeds and the vefp™ o !
gp reaV|ng atotal of 4,852,371 Viterbi parses. Those in-

clusters (and their selectional restrictions) become . . 0 .
increasingly specific put tuples were then divided into 90% training data
' and 10% test data, providing 4,367,130 training tu-

(b) The training tuples are processed: For each Weg (over 2,769,804 types), and 485,241 test tuples
ple, a PCFG parse forest as indicated by Figure (Jover 368,103 types).

is done, and the Inside-Outside algorithm is applied
to estimate the frequencies of the "parse tree rules
given the current model probabilities.

e model is generally applicable to all languages

. As we wanted to train and assess our verb class
model under various conditions, we used different
fractions of the training data in different training
(c) The MDL principle is applied to each selectionakegimes. Because of time and memory constraints,
preference model: Starting from the respective leafe only used training tuples that appeared at least
concepts in the partial hierarchies, MDL is calcutwice. (For the sake of comparison, we also trained
lated to compare each set of hyponym concepts thghe model on all tuples.) Furthermore, we dis-
share a hypernym with the respective hypernym colfegarded tuples with personal pronoun arguments;
cept. If the MDL is lower for the set of hyponyms they are not represented in WordNet, and even if
than the hypernym, the hyponyms are left in the pakhey are added (e.g. to general concepts such as
tial hierarchy. Otherwise the expansion of the hypemerson, entity they have a rather destructive ef-
nym towards the hyponyms is undone and we Coffect. We considered two subsets of the subcate-
tinue recursively upwards the hierarchy, calculatingorisation frames with 10 and 20 elements, which
MDL to compare the former hypernym and its cowere chosen according to their overall frequency in
hyponyms with the next upper hypernym, etc. Thehe training data; for example, the 10 most frequent
recursion allows the training algorithm to removeframe types weresubj:obj, subj, subj:ap, subj:to,
nodes which were added in earlier iterations and awgbj:obj:obj2, subj:obj:pp-in, subj:adv, subj:pp-in,
no longer relevant. It stops if the MDL is lower for sybj:vbase, subjith&t When relying on theses
the hyponyms than for the hypernym. 10/20 subcategorisation frames, plus including the
This step results in selectional preference modelghove restrictions, we were left with 39,773/158,134
that minimally contain the top concepftity, and and 42,826/166,303 training tuple types/tokens, re-

maximally contain the partial WordNet hierarchyspectively. The overall number of training tuples
betweenentity and the concept classes that have

been expanded within this iteration. 4A frame lists its arguments, separated by '’. Most argu-
. ments within the frame types should be self-explanatapyis
(d) The probabilities of the verb class model arp agjectival phrase.



was therefore much smaller than the generally availFhe probability of our example tuplgspeak,
able data. The corresponding numbers including tisubj-pp.to, professor, audiercein the base-
ples with a frequency of one were 478,717/597,078ne model is thenp(speak p(subj-pp.tdspeak
and 577,755/701,232. p(professof({speak, subj-pp.tosubj) p(audiencé
The number of clusters in the experiments was eprofessor (speak, subj-pp.topp.to).
ther 20 or 50, and we used up to 50 iterations over The model contains no hidden variables. Thus the
the training tuples. The model probabilities wereparameters can be directly estimated from the train-
output after each 5th iteration. The output compriseig data with relative frequencies. The parameter
all model probabilities introduced in Section 2.1.estimates are smoothed with modified Kneser-Ney
The following sections describe the evaluation of themoothing (Chen and Goodman, 1998), such that
experiments, and the results. the probability of each tuple is positive.

3.2 Evaluation Smoothing of the Verb Class Model Although

_ the verb class model has a built-in smoothing capac-
One of the goals in the development of the presentgg, it needs additional smoothing for two reasons:
verb class model was to obtain an accurate statisticgjrstly, some of the nouns in the test data did not

model of verb-argument tuples, i.e. a model whichyccyr in the training data. The verb class model
precisely predicts the tuple probabilities. In Orde%ssigns a zero probability to such nouns. Hence
to evaluate the performance of the model in this rege smoothed the concept instantiation probabilities
spect, we conducted an evaluation experiment, I nouriconcepy with Witten-Bell smoothing (Chen
which we compgted the probability which the verby,q Goodman, 1998). Secondly, we smoothed the
class model assigns to our test tuples and compargghpapilities of the concepts in the selectional pref-
it to the corresponding probability assigned by &rence models where zero probabilities may occur.
baseline model. The model with the higher proba- e gmoothing ensures that the verb class model
bility is judged the better model. assigns a positive probability to each verb-argument
We expected that the verb class model woulgpie with a known verb, a known subcategorisation
perform better than the baseline model on tuplegame, and arguments which are in WordNet. Other

where one or more of the arguments were not olyples were excluded from the evaluation because
served with the respective verb, because either thge verb class model cannot deal with them.

argument itself or a semantically similar argument
(according to the selectional preferences) was ol3.3 Results

served with verbs belonging to the same cluster. W?he evaluation results of our classification experi-

also expecte_d' that the verb CIQSS model assiONs Snts are presented in Table 1, for 20 and 50 clus-
lower probability than the baseline model to test tu:

les which fr. ntl red in the training dat ters, with 10 and 20 subcategorisation frame types.
ples ch frequently occurre € training daltary o table cells provide thig, of the probabilities

since the verb class model fails to describe precisel oo )
the idiosyncratic properties of verbs which are no er tuple tc_)ken._The probat_Jllltles increase with the
shared by the other verbs of its cluster. pumper of |ter§1t|ons, fIattenlng out after approx. 25
iterations, as illustrated by Figure 2. Both for 10
The Baseline Model The baseline model decom-and 20 frames, the results are better for 50 than for
poses the probability of a verb-argument tuple into 20 clusters, with small differences between 10 and
product of conditional probabilitie®: 20 frames. The resuIFS vary between' -11.850 and
-10.620 (for 5-50 iterations), in comparison to base-
ny , line values of -11.546 and -11.770 for 10 and 20
p(v, f,ay") = p(v) p(flv) [ [ p(ailai™, (v, f), fi)  frames, respectively. The results thus show that our
=1 verb class model results are above the baseline re-
%Thelabel of the't slot. The verb and the subcategori- sults after 10 iterations; this means that our statis-

sation frame are enclosed in angle brackets because they &igal model then assigns higher probabilities to the
treated as a unit during smoothing. test tuples than the baseline model.



No. of Iteration

Clusters 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50
10 frames

20 || -11.770| -11.408| -10.978| -10.900 | -10.853 | -10.841 | -10.831 | -10.823| -10.817 | -10.812
50 || -11.850| -11.452| -11.061| -10.904 | -10.730| -10.690 | -10.668 | -10.628 | -10.625| -10.620
20 frames
20 || -11.769| -11.430| -11.186| -10.971| -10.921| -10.899 | -10.886 | -10.875| -10.873| -10.869
50 || -11.841| -11.472| -11.018| -10.850| -10.737 | -10.728 | -10.706 | -10.680 | -10.662 | -10.648

Table 1: Clustering results — BNC tuples.

) The two examples are taken from the 10 frame/50
cluster verb class model, with probabilities of 0.05
and 0.04. The ten most probable verbs in the first

——wme  Cluster areshow, suggest, indicate, reveal, find, im-

Tt ply, conclude, demonstrate, state, meaith the

——m  twO most probable frame typesuibj and subj:that
i.e., the intransitive frame, and a frame that subcat-
egorises ahat clause. As selectional preferences
within the intransitive frame (and quite similarly

in the subj:that frame), the most probable concept

classe$ are study, report survey name, research
Figure 2: lllustration of clustering results. result, evidence The underlined nouns represent
specific concept classes, because they are leaf nodes
in the selectional preference hierarchy, thus refer-

Including input tuples with a frequency of one in . o . .
. . .o ring to very specific selectional preferences, which
the training data with 10 subcategorisation frames

. : . tentiall ful f llocation i tion. Th
(as mentone in Section 3.1 decreasestabeper o b RE TSR TR T
tuple to between -13.151 and -12.498 (for 5-50 it-

. N . ) .~ Tarise, remain, exist, continue, need, occur, change,
erations), with similar training behaviour as in Fig-. . . . e
mprove, begin, becomavith the intransitive frame

ure 2,.and N comparsion o a b_aselme of -17.98 jeing most probable. The most probable concept
The differences in the result indicate that the mod- o :

: ) classes argroblem condition, question, natural
els including the hapax legomena are worse than th enomenon, situatioThe two examples illustrate
models that excluded the sparse events; at the sar%e L ) )
iime. the differen between baseline and clust tr at the verbs within a cluster are semantically re
in er;md?al ar: IZr c(c:rs etween baseline and clustq ted, and that they share obvious subcategorisation

9 ger. frames with intuitively plausible selectional prefer-
In order to get an intuition about the qualitativeences.

results of the clusterings, we select two example
clusters that illustrate that the idea of the verb clas$ Related Work

moggl htas been regll[siq W'tt?]m tlhetclusters. AC(')ur model is an extension of and thus most closely
cording to our own INtUILoN, INE CIUSIETS are oversy a4 1o the latent semantic clustering (LSC) model
all semantically impressive, beyond the example%v

Rooth et al., 1999) for verb-argument pai
Future work will assess by semantics-based ev. ) M au palrs a)

vhich defi thei ilit follows:
uations of the clusters (such as pseudo-word dis- ich defines their probability as follows

ambiguation, or a comparison against existing verb p(v,a) = Zp(c) p(v]e) p(alc)
classifications), whether this intuition is justified, . ¢

whether it transfers to the majority of verbs WithinIn cqmpansqn to our model, the LSC .model pnly
the cluster analyses, and whether the clusters Ca%c_)naders a single argument (such as direct objects),

ture polysemic verbs appropriately. ®For readability, we only list one noun per WordNet concept.



or a fixed number of arguments from one particulWordNet hierarchy (Resnik, 1997; Abney and Light,
lar subcategorisation frame, whereas our model d4999; Ciaramita and Johnson, 2000; Clark and Weir,
fines a probability distribution over all subcategori-2002). Brockmann and Lapata (2003) compared
sation frames. Furthermore, our model specifies sesome of the models against human judgements on
lectional preferences in terms of general WordNethe acceptability of sentences, and demonstrated that
concepts rather than sets of individual words. the models were significantly correlated with human
In a similar vein, our model is both similar andratings, and that no model performed best; rather,
distinct in comparison to the soft clustering apthe different methods are suited for different argu-
proaches by Pereira et al. (1993) and Korhonen etent relations.
al. (2003). Pereira et al. (1993) suggested determin-
istic annealing to cluster verb-argument pairs int
classes of verbs and nouns. On the one hand, theihis paper presented an innovative, complex ap-
model is asymmetric, thus not giving the same inproach to semantic verb classes that relies on se-
terpretation power to verbs and arguments; on thectional preferences as verb properties. The prob-
other hand, the model provides a more fine-graineghilistic verb class model underlying the semantic
clustering for nouns, in the form of an additional hi-classes was trained by a combination of the EM al-
erarchical structure of the noun clusters. Korhonegorithm and the MDL principle, providing soft clus-
et al. (2003) used verb-frame pairs (instead of verkers with two dimensions (verb senses and subcate-
argument pairs) to cluster verbs relying on the Inforgorisation frames with selectional preferences) as a
mation Bottleneck (Tishby et al., 1999). They hadesult. A language model-based evaluation showed

a focus on the interpretation of verbal polysemy agat after 10 training iterations the verb class model
represented by the soft clusters. The main differenggsults are above the baseline results.

of our model in comparison to the above two models e plan to improve the verb class model with re-
is, again, that we incorporate selectional preferencepect to (i) a concept-wise (instead of a cut-wise)
(rather than individual words, or subcategorisationmplementation of the MDL principle, to operate on
frames). concepts instead of combinations of concepts; and
In addition to the above soft-clustering models(ji) variations of the concept hierarchy, using e.g. the
various approaches towards semantic verb classifiense-clustered WordNets from the Stanford Word-
cation have relied on hard-clustering models, thuget Project (Snow et al., 2007), or a WordNet ver-
simplifying the notion of verbal polysemy. Two sjon improved by concepts from DOLCE (Gangemi
large-scale approaches of this kind are Schulte i@t al., 2003), to check on the influence of concep-
Walde (2006), who used k-Means on verb subcatual details on the clustering results. Furthermore,
egorisation frames and verbal arguments to clustgye aim to use the verb class model in NLP tasks, (i)
verbs semantically, and Joanis et al. (2008), who aprs resource for lexical induction of verb senses, verb
plied Support Vector Machines to a variety of verbg|ternations, and collocations, and (i) as a lexical

features, including subcategorisation slots, tenseesource for the statistical disambiguation of parse

voice, and an approximation to animacy. To thgrees.

best of our knowledge, Schulte im Walde (2006) is

the only hard-clustering approach that previously in-

corporated selectional preferences as verb featurég_eferences

However, her model was not soft-clustering, andteven Abney and Marc Light. 1999. Hiding a Seman-

she only used a simple approach to represent selec-ic Class Hierarchy in a Markow Model. IRroceed-

tional preferences by WordNet's top-level concepts, Ngs of the ACL Workshop on Unsupervised Learning

instead of making use of the whole hierarchy and gal;lkat&rgl Language Processingages 1-8, College

more sophisticated methods, as in the current pap?reonar;j E. éaum. 1972. An Inequality and Associated
Last but not least, there are other models of se- \jaximization Technique in Statistical Estimation for

lectional preferences than the MDL model we used probabilistic Functions of Markov Processésequal-

in our paper. Most such models also rely on the ities, I11:1-8.

Summary and Outlook
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