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Chapter 1

Introduction

LoPar is a parser for probabilistic context-free grammars (PCFGs) and head-lexicalised
probabilistic context-free grammars (HPCFGs). Possible applications of this program are
symbolic parsing with CFGs, training of (head-lexicalised) PCFGs, statistical parsing with
(head-lexicalised) PCFGs, Viterbi parsing with (head-lexicalised) PCFGs, part-of-speech
tagging and chunking.

This report is mainly a documentation of the parser implementation and the underlying
theoretical concepts and not a manual for the LoPar program. For the latter, the reader is
referred to the online manual pages.

1.1 Relationship to the Galacsy Tools

The functionality of LoPar is comparable to that of the Galacsy tools supar, ultra, hypar,
showWords and showRules, which have been developed by Glenn Carroll. However, LoPar
is faster and has additional functionality. The file formats of LoPar and the Galacsy tools
differ and a conversion is only possible for unlexicalised grammar files.



Chapter 2

Probabilistic Context-Free
Grammars

A probabilistic context-free grammar is a context-free grammar which assigns a probability
P(r) to each grammar rule r. In order for P to be a probability distribution, it is required
that the probabilities of all rules with the same left hand side add up to 1.

The probability of a parse tree is defined as follows.

P(T) = ][ P(n)F®

ruler

F(r) is the number of times, rule r has been used to generate T.

In contrast to CFGs, a PCFG is able to rank different analyses of a sentence according to
their probability. The ranking is used e.g. to reduce a large number of possible analyses to
a small set of likely analyses for further processing. However, PCFGs fail to resolve many
frequent syntactic ambiguities like PP attachment ambiguities and coordination ambigui-
ties, because the same probability is assigned to two analyses which apply the same rules in
different order. The phrase the man on the hill with the telescope where the prepositional
phrase with the telescope could attach to either one of the preceding noun phrases is an
example. Disambiguation of these ambiguities requires information about the lexical heads
of the constituents, as Hindle and Rooth [Hindle and Rooth, 1993] show. Head-lexicalised
probabilistic context-free grammars (HPCFGs) [Carroll, 1995, Carroll and Rooth, 1998]
deal with this problem.

2.1 Head-Lexicalised Probabilistic Context-Free Grammars

Syntactically, a head-lexicalised probabilistic context-free grammar (HPCFG) is a proba-
bilistic context-free grammar (PCFG) in which one of the categories on the right hand side
of each grammar rule is marked as the head with an apostrophy (?).

Example: NP — DT N’



Each constituent bears a lexical head, which is propagated from the head daughter. The
lexical head of a terminal node is the respective word form.

HPCFGs assign the following probability to a parse tree T:

P(T) = Psri(cat(root(T))) *
Psiort(head(root(T)) | cat(root(T))) x*
H Prule(r | ca’t(n)’ h'ea'd(n)) *
nonterm n in T'
H Ppoice(head(n) | cat(n), cat(parent(n)), head(parent(n))) =
nonroot nin T

H Py ((term) | cat(n), head(n)) * Pieg(word(n) | cat(n), head(n))

termnin T

Five families of probability distributions are relevant here. Psy¢(C) is the probability
that C is the category of the root node of the parse tree. Pjpri(h|C) is the probability
that a root node of category C has lexical head h. Py (r|C,h) is the probability that a
node of category C with lexical head h is expanded with rule r. Pepyice(h|C, Cp, hyp) is the
probability that a (non-head) node of category C bears the lexical head h given that the
parent category is Cp and the parent head is hy. Prye((term)|C, k) is the probability that
a node of category C with lexical head h is a terminal node. Pj,(w|C,h), finally, is the
probability that a terminal node with category C and lexical head h expands to the word
form w. If the lexical head of a terminal node is the word form, then P, (w|C,h) is 1 if w
and h are identical and 0 otherwise.

2.2 Relationship between HPCFGs and PCFGs

It is possible to convert a HPCFG into an equivalent PCFG by means of the following
construction:

1. Start with an empty PCFG.
2. Add the start symbol TOP to the PCFG.

3. If C is a start symbol of the HPCFG, then add a rule TOP — (C,h) for each lexical
head.

4. If A — B;...B....B,, is a rule of the HPCFG and h is a lexical head, then add a
rule (C,h) — (B1,C,h)...(B;,h)...(By,,C,h). (Note the difference between head and
non-head items on the right hand side of the rule.)

5. For each pair of categories A and B such that the HPCFG contains a rule A —
...B..., where B is not the head, add a rule (B, A,h) — (B, ') to the PCFG for each
combination h and h’ of lexical heads.

6. For each lexical entry of the form A — w and each lexical head h, add a lexical
entry (A,h) — w if h is equal to w (or if h is a stem of w given category A in case of
lemmatisation, see section 2.4).



The above construction will return a PCFG which is not minimal, i.e. which contains
rules that can not be used in building a well-formed parse tree. A verb phrase with
probabilistic as lexical head, e.g., will never be part of a parse tree. In order to minimise
the size of the PCFG, it is necessary to restrict the set of lexical heads to those which can
actually project to a node of the respective category.

2.3 Unknown Words

LoPar considers all unknown words as a single token <unknown> which propagates
<unknown> as lexical head. The word form probability P, ({unknown)|C, (unknown))
is 1. In order to get a true probability model for the actual input string — as required
in language modelling — P, ((unknown)|C, (unknown)) has to be replaced by a probabil-
ity distribution Pje,(w|C, (unknown)) which assigns probabilities to an infinite number of
possible unknown words w.

A probability distribution for unknown words could be built as follows.

1. Train an n-gram language model L, (C) of character sequencies on all words (types,
not tokens) of category C.

2. Compute the sum S of the probabilities which L, (C) assigns to the words of category
C' in the lexicon.

3. Divide the probabilities P, (cy(w) which L, (C) assigns to words by 1 — S in order
to get the probability distribution Pje,(w|C, (unknown)).

2.4 Lemmatisation

One of the major problems in training HPCFGs is the large number of parameters which
have to be estimated from a limited amount of training data. The number of parameters
is reduced considerably if stems are used as lexical heads rather than inflected word forms,
increasing the reliability of the parameter estimates. This is in particular true for languages
with a rich morphology like German.

When the lexical heads are stems, the word form probability distribution Py, (w|C, h) is not
trivial anymore because several word forms could have the same stem and part of speech
(just assume that all numbers have the same stem). The Py, parameters therefore have to
be estimated from training data like other parameters.



Chapter 3

Parsing

LoPar is an implementation of the well-known left-corner parsing algorithm for context-free
grammars (see e.g. [Graham et al., 1980]). The chart is organised as a two-dimensional
array of lists. Each list is a linked list of edges. Each edge contains information about
its start position, the grammar rule and the “dot” position (the position after the last
daughter constituent which is covered by the edge). The first dimension of the array of
lists corresponds to the end position of the edges, the second dimension corresponds to the
category of the next item after the dot.

The chart representation maximises the efficiency of the complete operation of the left-
corner parser. Whenever a new constituent has been found, the completer is invoked with
the list of edges ending at the start position of the new constituent and expecting the new
constituent.

Before a new edge is inserted into the chart, the parser has to check whether the edge has
been inserted before. In order to avoid a scan of the whole list into which the new edge is
to be inserted (usually a costly operation), the parser stores the edges (or rather pointers
to them) additionally in a hash table. By means of the hash table it is possible to perform
the check for duplicates in approximately constant time!.

The recognised constituents are stored in a hash table, as well. Whenever a new complete
edge has been found, a new constituent is inserted into the hash table unless a constituent
of the same category and with the same span has been inserted before. In order to build
the parse forest, the parser also adds a link from the constituent to the new edge. Similar
links are added to the edges.

3.1 Parse Forest Representation

The parse forest, a compact representation of the parsing result, is internally stored in the
following way (cmp. fig. 3.1): Each constituent of the parse forest either dominates a word
form (terminal node) or a set of passive edges (nonterminal node). Each edge dominates a

LOf course, the runtime will be worse if the hashing function is unable to distribute the hashed items
evenly. So far, this problem has not been observed.
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Figure 3.1: internal parse forest representation

list of subedges. Each subedge either dominates an (active) edge and a constituent or only
a constituent if this constituent is the left-most daughter node.

3.2 Lexicalisation

In case of lexicalised parsing, the context-free parse forest has to be lexicalised after parsing.
Ambiguous constituents may have more than one lexical head. Therefore the lexicalised
parse forest will — in general — have a more complex structure than the unlexicalised parse
forest.

LoPar computes the lexicalised parse forest in a single pass through the parse forest. Each
node (constituent or edge) of the unlexicalised parse forest is linked to its lexicalised clones.
Whenever a node of the unlexicalised parse forest is visited during lexicalisation, LoPar first
lexicalises the child nodes recursively. Then it generates a new node for each combination of
the lexicalised clones of its daughter nodes and inserts it into the new parse forest using the
same hash table-based functions as for the generation of the unlexicalised parse forest. If
the same node (same span, same category/dotted rule, same lexical head) has been inserted
before, then, again, only a link to the new analysis is added. The unlexicalised parse forest
is preserved during lexicalisation.

There is a problem, however: During the lexicalisation of subedges which do not cover
the head of the rule, the lexical head is still unknown. The lexicalisation of these nodes
therefore has to be delayed until the head information is available.



Chapter 4

Parameter Estimation

The parameters of lexicalised as well as unlexicalised probabilistic context-free grammars
are iteratively estimated with the Inside-Outside algorithm [Lari and Young, 1990], which
is an instance of the Expectation-Mazimisation (EM) algorithm [Baum, 1972]. Each iter-
ation of the Inside-Outside algorithm consists of two steps, namely frequency estimation
and parameter estimation.

Lexicalised probability models are estimated with a bootstrapping approach. We first
train the unlexicalised PCFG starting with a randomly initialised model. Then we generate
lexicalised frequencies with the PCFG in order to obtain start values for the final lexicalised
training.

4.1 Parameter Estimation for PCFGs

PCFGs encompass probability distributions for start events Psiqr¢(C), rule events Prye(r)
and lexical events Pj,;(w|C). The probabilities of these events are estimated based on
estimated frequencies. The simplest estimation formula is based on relative frequencies
and divides the frequency of an event by the sum of the frequencies of all competing
events.

F(e)

PO = s

Relative frequency estimation assigns zero probability to all unobserved events. A HPCFG
has so many parameters, however, that many or even most of the corresponding events do
not occur in the training corpus. These unobserved events should get a positive probability
because a new corpus is likely to contain some of them. More sophisticated estimation
techniques which “smooth” the probability distributions will be discussed in section 4.4.
The estimation of the event frequencies is discussed in section 4.3.3.



4.1.1 Inside Probabilities

The inside probability of a terminal constituent c of category C, which expands to the word
form w is defined as follows:

Pinside(c) = Prule(<term>|C)Plex(w‘C)

The inside probability of a non-terminal constituent of category C, is the sum over the
inside probabilities of all (passive) edges which produce this constituent multiplied by the
probabilities of the respective rules.

Pinside(c) = ZPinside(e)P(r|C)

The inside probability of an edge e is the sum over the inside probabilities of all its subedges

sl.

Pinside(e) = ZPinside(S)
s

The inside probability of a subedge s is the product of the inside probability of the daughter
constituent ¢ and the daughter edge e (if present, otherwise 1).

Pinside(s) = Pinside(€) Pinside(c) if subedge e exists
Pinside(s) = Pinsidge(c) otherwise

The overall probability of the parse forest is the sum over the inside probabilities of all root
nodes ¢ multiplied by the start symbol probabilities of the respective categories C"

P(T) = Z Pinside(c) Pstart(C)

root node ¢

4.1.2 OQutside Probabilities

The outside probability of a root node of category C, is equal to the start symbol probability
Pyt (C) of the respective category C.

Poutside (C) = Pstart(C)

The outside probabilities of the other events in the parse forest are initialised to zero and
then computed while the parse forest is traversed in “pre-requisite” order (see section 4.1.4).

For each non-terminal constituent c of category C, the parser runs through all passive
(complete) edges e which produce this constituent and adds the product of the outside
probability of ¢ and the probability of the respective grammar rule r to the outside prob-
ability of e.

Poutside (6) +=  Poutside (C) Prule('r|C)

1The parser does not actually store the subedge probabilities.
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For each edge e, the parser runs through all subedges s and adds to the outside probability
of the respective child constituent ¢ the product of the outside probability of e times the
inside probability of the child edge e’ of subedge s (if present, otherwise 1).

Pyutside (C) += Poutside(e) anide(el) if e’ exists
Poutside (C) += Poutside(e) otherwise

Then we add the product of the outside probability of e times the inside probability of the
child constituent ¢ of s to the outside probability of the child edge e’ (if present):

Poutside(e,) += Poutside (6) f’inside (C)

4.1.3 Estimated Frequencies

The estimated frequency of a start event related to some root constituent c of category C
is equal to the product of its inside probability and its outside probability divided by the
overall probability P(T'). The start frequencies are accumulated in Fsyq.¢(C).

Fstart(c) += F’inside(c) Poutside(c) / P(T)

The estimated frequency of a rule event r related to some passive edge e which is dominated
by a constituent of category C, is equal to the product of its inside probability and its outside
probability divided by the overall probability P(T).

Frule(ra C) += Ijinside(e) Poutside(e) / P(T)

The estimated frequency of a lezical event related to some terminal constituent ¢ of category
C is equal to the product of its inside probability and its outside probability divided by the
overall probability P(T).

Flee(w,C) += Pisige(c) Poutside(c) / P(T)

Finally, we derive the frequency that a constituent of category C is terminal.

Frue((term),C) = Z Flez(w, C)

4.1.4 Topological Sorting

In order to compute the outside probabilities, we have to traverse the parse forest in
prerequisite order, i.e. before a node is processed, the processing of all parent nodes must
have been completed. This ordering of the nodes is called a topological ordering.

The topological sorting algorithm presented in [Cormen et al., 1994] has been adapted for
LoPar. It requires a counter for each node of the parse tree. The counters are initialised
to 0. In a first pass, the parse forest is traversed top-down and whenever a node is visited,

11



its counter is incremented. If the node is visited the first time (i.e. the counter value is 1),
then its child nodes are visited, as well, from left to right.

After this first pass, the counters contain the number of parent nodes for each node. The
outside probabilities are computed in a second top-down pass. Whenever a node is visited,
its counter is decremented and — if the counter is 0 afterwards — the computations pertaining
to this node are performed and the child nodes are visited.

4.2 Lexicalised Frequency Estimation with PCFGs

In the last iteration of unlexicalised training, the parser computes lezicalised frequencies in
order to obtain start values for the subsequent training of the head-lexicalised PCFG. The
computation parallels that for unlexicalised frequencies with the exception of the lexical
choice frequencies Fippice(h, C, Cp, hy) which have no correspondence.

e lexicalised start event frequencies (c is a node with category C and lexical head h).
Fstart(ca h) += I’inside(c) Poutside (C) / P(T)

e lexicalised rule event frequencies (e is a passive edge with category C on the left side
of the rule and lexical head h).

Frule("'a C, h) += Pinside(e) Poutside(e) /P(T)
e lexical choice event frequencies. These are related to subedges in the parse forest.
Cp is the category on the left side of the corresponding rule, C is the category of

the daughter constituent which must not be the head, and e is the left subedge (if
present, otherwise Pj,giqe(€) is 1).

Fchoice(ha C, Cpa hp) += Poutside(s) ]Dinside(e) ]Dz'nsz'de(c) / P(T)
e lexicalised word event frequencies
Eez(wa C, h) += Pinside(c) Pouts’ide(c) /P(T)
4.3 Frequency Estimation with HPCFGs

4.3.1 Inside Probabilities

The inside probabilities in a head-lexicalised parse forests are computed as follows:

e inside probabilities of terminal constituents:

Pinside(c) = Prule(<term)|05 h) Bem (w|Ca h)

12



e inside probability of non-terminal constituents:

Pinside(c) = leinside(e)P(rlca h')
e

e inside probability of edges:
P’inside(e) = Z P’inside(s)
S

¢ inside probability of subedges s where the daughter constituent ¢ is the head:
]Dinside(s) = f’inside(e) ]Dinside(c) if SUbedge e exists
Pinside(s) = Pinside(c) otherwise
e inside probability of subedges s where the daughter constituent ¢ is not the head:
P’inside(s) =  Pinside (6) Pchoice(h’d|Cd; Ca h') Pinside (C) if SUbedge e exists
P)inside(s) = Ijinside (C) Pchoice(hdlcda C, h) otherwise

e overall probability of the parse forest:

P(T) = Z })inside (C) Pstart(C) Pstart(h|c)

root node ¢

4.3.2 Outside Probabilities

The outside probability of a root node:
Poutside (C) = Pstart(C) Pyior (h|C)

For each non-terminal constituent c of category C, the parser runs through all passive
(complete) edges e:

Poutside(e) += Poutside (C) Prye (T‘G, h)

For each edge e, the parser runs through all subedges s and updates the outside probabilities
of the non-head daughter constituents:

Poutside (C) += Poutside(e) Hnside(el) Pchoice(hd‘cda C, h) if e’ exists
Poutside (C) += Poutside(e) Pchoice(hd‘cda C, h) otherwise

Then the parser updates the outside probabilities of the dominated edge €'
Poutside (el) += Poutside(e) Ijinside (C) Pchoice(hdlcda C, h)
If the daughter constituent of e is the head then the parser adds

Poutside (C) += Poutside(e) Ijinside(el) if e’ exists
Poutsize(c) += Poytside(€) otherwise

and

Poutside(el) += Poutside (6) ljinside (C)

13



4.3.3 Estimated Frequencies

The estimated frequency of a lexicalised start event related to some root constituent ¢ of
category C is computed as:

Fstart(Ca h) += Pinside(c) Poutside(c) / P(T)

The estimated frequency of a lexicalised rule event r related to some passive edge e:

Frue(r,C,h)  += Pinside(e) Poutside(e) / P(T)

The estimated frequency of a lexical event related to some constituent c:

Fleac(wa Ca h) += Pinside(c) Poutside (C) / P(T)

The estimated frequency of a lexical choice event where ¢ is the daughter constituent of
some subedge s and not the head:

Fchoice(hda Cq,C, h) += Poutside(e) Pinside (el) Rinside(c) Pchoice(hd|Cd> C, h) / P(T)

4.4 Parameter Smoothing

As mentioned earlier, it is necessary to assign a positive probability to events which are not
observed in the training corpus. LoPar uses a variant of the absolute discounting method
[Ney et al., 1994] for this purpose.

4.4.1 Absolute Discounting

The basic idea of absolute discounting is to subtract a small value (the discount) from
all frequency counts and to redistribute the sum of these discounts over the events with
zero frequency according to some backoff distribution. The absolute discounting method
was adapted in order to be applicable to the real-valued counts generated by LoPar. The
following method was implemented:

Ny is the number of types whose frequency F(t) is below 0.9.

N; is the number of types whose frequency F'(t) is between 0.9 and 1.9.
N, is the number of types whose frequency F'(t) is between 1.9 and 2.9.
N is the total frequency.

The discount d, which is subtracted from the positive counts, is computed according to the
following formula presented in [Ney et al., 1994]:

d:= Nl/(Nl + 2N2)
The discounted frequencies F'(t) are obtained by subtracting the discount:

14



D:=0
for all types t do
if F(t) > d then
F'(t):=F(t) —d

D:=D+d
else

F'(t):=0

D:=D+ F(t)

The probability of a type t with a positive discounted frequency F'(t) is then defined as:

P(t):=F'(t)/N

Finally, the backoff factor « is calculated.

a:D/N/ Z Pbaclwff(t)
t,F’(t)=0

The probability of a type with a discounted frequency of 0 is then:
P(t) =« Pbaclcoff(t)

If the backoff probability distribution is uniform, then the probability of types with dis-
counted frequency 0 is computed directly:

P(t) = D/N/Ny
If either N1 or Ny is 0 or if the resulting frequency for events with corpus frequency 0 is

higher than that for events with corpus frequency 0.9, then a different smoothing method
is used which replaces zero frequencies in the original counts by a small constant.

4.4.2 Backoff Distributions

LoPar implements the following backoff strategies.

® Piiart(h|C) is smoothed with a uniform backoff probability distribution Isstart(h|C) =
1/he(C), where he(C) is the number of possible heads of C.

® Prye(r|C, h) is smoothed with P, (r|C) (the unlexicalised rule probability) as back-
off distribution.

® Pepoice(R|C, Cp, hy) is iteratively smoothed with Peppice(R|C, Cp), Pehoice(h|C) and a
uniform distribution P.pgice(h|C) = 1/hc(C) as backoff probabilities.

o P, (w|C,h) is smoothed with a uniform backoff distribution P.,(w|C,h) =
1/we(C, h), where we(C, H) is the number of lexical entries with category C and
head (lemma) h.

15



4.4.3 Computation of the Number of Possible Heads

The number of possible lexical heads of the categories is computed with a bit-vector repre-
sentation. The parser allocates a bit vector v¢c with as many bits as there are lexical heads
for each category C and initialises it to 0. Then it sets for each lexical entry with category
C and lexical head h (either stem or word form) the corresponding bit v.[m] to 1. Then,
it propagates the information by or-ing the bit vectors in bottom-up order. For each rule
with C on the left side and C' as head category on the right side, the following operation
is executed.

Vo ‘= V¢ Oor ’UIC

Once the bit vectors have been computed, the number of possible lexical heads is obtained
by counting the number of bits in each vector.

4.5 Parameter Pooling

We have already discussed, how lemmatisation is used to reduce the number of parameters
of a HPCFG. Another way to achieve a reduction is parameter pooling. Consider the
following grammar rule which adjoins an adverb to a verb phrase.

VP_fin_past -> VP_fin_past ADV

The lexical choice distribution Pppyice(adv|ADV,V P_fin_past,verb) is unlikely to dif-
fer very much if we replace VP_fin past by VP_fin pres or VP_inf past. There-
fore, we would like to pool the corresponding distributions into one distribution
Pepoice(adv|ADV,V P_fin_past|V P_fin_pres|...,verb) in order to get more reliable esti-
mates.

But, what does the parameter pooling mean for the probability model? Remember that
each HPCFG has an equivalent PCFG. The same is true for HPCFGs with parameter
pooling. We just modify step 5 of the grammar transformation in section 2.2 in the following
way:

5 For each pair of categories A and B such that the HPCFG contains a rule A — ...B...,
where B is not the head, add a rule (B, A,h) — (B,|A|,h) to the PCFG for each
lexical head h, where |A| is the pooling class of A.

Further add a rule (B, |A|,h) — (B, h') for each lexical head h°.

In case of parameters pooling, the lexical choice probability Pepoice(h | C, Cp, hp) is replaced
by Pehoice(h | Ce, |Cpl, hyp), where |Cp| is the pooling class of category Cp,. The probability of
arule (B, A,h) — (B, |A|, h) is always 1 because it is the only rule which extends (B, A, h).

16



4.6 Logarithmic Computation

The computation of the inside and outside probabilities poses a numerical problem. For
large sentences, the probability of the whole parse forest may drop below the smallest
numerical value which the computer is able to represent. The usual double-precision floating
point numbers cannot represent numbers smaller than about 1073%. Lopar uses therefore
a logarithmic representation of the probabilities.

For the Viterbi algorithm used to extract the most probable parse tree, this means that
the product of probabilities has to be replaced by the sum of logarithmic probabilities.

The implementation of the inside-outside algorithm with logarithmic probabilities is more
difficult because it also involves summation, which has no equivalent in the logarithmic
domain. LoPar uses the following function to add logarithmic numbers:

add(z,y)
/* x and y are logarithmic numbers */
if (z <y — log(1073%))
return y
if (z — log(10730) > y)
return x
base := min(z,y)
return base + log(exp(z — base) + exp(y — base))
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Chapter 5

Working with LoPar

5.1 Grammar Format

A grammar for LoPar consists of four files.

e the grammar file
e the lexicon file
e the start symbol file

e the open-class category file

5.1.1 The Grammar File

The grammar file contains — little surprise — the grammar. Each line starts with a number
which is interpreted as the rule frequency. Then follows the category on the left side of the
rule and the sequence of daughter categories. One daughter category has to be marked as
the head with an apostrophy (’).

Example:
11.3 S NP VP’
30.2 NP DT N’

The head marking is optional if neither option -heads nor option —lexmodel is specified.
The frequencies in the grammar file are mandatory unless option -symbolic is chosen.
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5.1.2 The Lexicon File

Each line of the lexicon file contains lexical entries for one word form. The line starts with
the word form which may contain blanks. The word form is followed by a tab character
and a sequence of category/frequency pairs. If the parser option -stems was specified, then
the parser expects a stem after the frequency.

The specification of the frequency is mandatory unless option -symbolic is chosen.

Example (with stems):

because of PREP 13.1 because_of
can AUX 113 can NSG 7 can VFIN O can VINF O can
saw NSG 9 saw VFIN 67 see VFIN 2 saw VINF O saw

The parser is able to parse without a lexicon if the parser input contains tags.

5.1.3 The Start Symbol File

The start symbol file contains the list of categories which are allowed at the root of a parse
tree.

Example:

S 1000
NP 10
X 1

All categories are possible start symbols if no start symbol file is specified.

5.1.4 The Open-Class Categories

In order to parse unrestricted input, the parser must be able to deal with unknown words.
The open-class category file contains the list of possible unknown word categories. It is then
assumed that the lexicon is complete wrt. closed-class words like prepositions, conjunctions,
determiners, etc.

Example:

N 100
v 1
ADJ 10
ADV 10
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5.1.5 Input File

The parser input must have one-word-per-line format, i.e. each input line corresponds to
one input token. The end of a sentence has to be marked with an empty line. The input may
contain part-of-speech tags after the token and a tab character. If an input line contains
tags, then these are the only tags which will be considered during parsing. Otherwise the
set of possible tags of a token is obtained from the lexicon.

5.2 Symbolic Parsing

LoPar can be used for purely symbolic parsing as the following command illustrates.
lopar grammar text text.parsed

Because no lexicon was specified, the parts of speech of the words must be given in the
input.

In the above example, the parser will print the parse forests for the sentences in text to
the file text .parsed. Each parse forest contains one line for each constituent in the parse
forest. The line starts with the category name followed by the start and end position and
the list of analyses of the constituent. Each analysis either consists of the word form (in
case of a terminal node) or of the rule number, the sequence of daughter node IDs and a
percent sign. The daughter node ID is the number of the line in which the correponding
constituent is printed (starting at 0). Each line ends with two percent signs and the parse
forest ends with three percent signs.

Example:

NP O2 212 %%
DT 0 1 the %%
NBAR 1 2 4 3 %%
N 12 man %%%

It is possible to pipe input into the parser and out of the parser as the following command
shows.

cat text | lopar grammar > text.parsed

5.3 Training

The training of a HPCFG proceeds in three steps.

e unlexicalised training (several iterations on text chunks of growing size)

e lexicalisation (one iteration on the whole training corpus)
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e lexicalised training (several iterations on the whole corpus)
Two iterations of unlexicalised training on a few thousand sentences are usually sufficient
to obtain a good basis for the lexicalisation of the grammar. The following commands

might be used for this purpose:

head -10000 corpus | lopar -in param -t paraml
head -10000 corpus | lopar -in paraml -t paraml

Option -in parammeans that the grammar is to be read from param. gram, the lexicon from
param.lex, the start categories from param. start and the open-class tags from param. oc.

The -iter N option allows to perform the unlexicalised training in one step. With this
option, the parser first trains on N tokens, then on 2N tokens, then on 4N tokens and so on
until the whole corpus has been parsed.

head -20000 corpus | lopar -in param -t paraml -iter 10000
After parsing a multiple of 10,000 tokens and after parsing the whole input corpus, the

parser saves the parameters in files named paraml.gram, paraml.lex, paraml.start and
paraml.oc.

Now, we can lexicalise the grammar with the command:
lopar -in paraml -t param2 -heads corpus
The lexicalised grammar comprises three additional files, namely param2.1lstart with the

lexicalised start frequencies, param2.lgram with the lexicalised grammar rule frequencies
and param2.1lchoice with the lexical choice frequencies.

After a few iterations of lexicalised training with the command
lopar -in param2 —t param2 -lexmodel corpus

the training is finished. Now, we are ready to parse a test corpus with the command:
lopar -in param2 -lexmodel corpus parse-forests

Viterbi parses are obtained with the command:

lopar -in param2 -lexmodel -viterbi corpus parse-trees

5.4 Tagging with LoPar

LoPar computes the most probable sequence of tags (terminal categories) for a sentence
by parsing the sentence and then extracting the tags with the highest estimated frequency.
The corresponding program option is -tagging.
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5.5 Chunking with LoPar

Some applications (e.g. in information retrieval) need low-level constituents like NPs and
PPs rather than full parses. If LoPar is called with the option -chunking <file>, then it
will extract the most probable sequence of chunks. The set of chunk categories is listed in
<file>.

S

NP VP
v (NP

Figure 5.1: A partial parse tree. The chunks are encircled.

The most probable chunk sequence of a parse forest P is defined as the sequence of non-word
leaf nodes of the partial parse tree T which satisfies the following conditions:

1. T is a subgraph of the parse forest P.
2. The root node of T is also a root node of P.
3. The leaf nodes of T are either words or nodes labelled with a chunk category.

4. T has a higher score S(T") than any other partial parse tree satisfying 1.) and 2.).

The score S(7T) is defined as the sum of the probabilities of all parse trees which match T.
It is efficiently computed as the (Viterbi) probability of the (partial parse tree) T times the
product of the inside probabilities of all its terminal (chunk) nodes.

The score of the partial parse tree in fig. 5.1 is the probability of the partial tree itself
times the inside probability of the sub-parse forest rooted in the first NP times the inside
probability of the sub-parse forest rooted in the second NP.

Problem: The presented algorithm prefers recursive chunks. The reason is the following:
As the size of the partial parse tree T grows, the number of matching complete parse trees
decreases and hence the score of the partial parse tree decreases.

In order to get only non-recursive chunks, we replace the inside probability of a noun chunk
C in the computation of the score by the sum of the probabilities of all subtrees rooted in
C and not containing any chunk category labels.

Sketch of the Chunker Algorithm

P¢ is the “with chunk” probability
Pnc is the “without chunk” probability
analyses(e) returns pairs consisting of a subedge s and a daughter node n.

process_node(n)
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if n is a terminal node with category ¢ then
if ¢ is a chunk category then
Pc ('n') = Pinside (n)
PNc(’n) =0
else
Pc(n) =0
Pnc(n) = Pinsidge(n)
else (non-terminal node)
PNC(n) = ZeEedges(n) PTUle(e)PNC(e)
Pc(n) = ma"TeEedges(n)Prule(e)PNC’ (e)
if ¢ is a chunk category then
if Pc(n) < Pnc(n)
Po(n) = Pye(n)
PNc(’n) =0

process_edge(e)
PNc(e) = E(s,n)éanalyses(e) PNC(S)PNC(n)
PC(e) = maw(s,n)éanalyses(e)maw(PC(S)PC(n); PC(S)PNC(n); PNC(S)PC(”’))

print_node(n)
if Pc(’n,) 2 PNc(n) then

if n is a terminal node then
print_chunk node(n)

else (not a terminal node)
if n has a chunk category and Pc(n) > Pc(best_edge(n)) * Ppyie(e) then

print_chunk_node(n)

else

print_edge(argmaz ceqges(n) P (€))

Unsolved problem: The chunking algorithm does not sum over all analyses containing the
chunk sequence. Consider e.g. the well-known sentence I saw the man on the hill with
the telescope. It is possible to efficiently compute the probability of all parse trees exactly
containing a particular chunk sequence, but there are exponentially many of them, so that
enumerating them is too costly. A heuristic search strategy which examines only likely
candidate sequences might help but has not been implemented so far.
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