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Abstract

A language-independent period disambiguation method is presented
which achieves high accuracy (> 99.5 %) and requires no other informa-
tion than the corpus which is to be tokenised. The presented method
automatically extracts statistical information about likely abbreviations,
about sentence-initial words and about words which precede or follow
numbers. This information is used to disambiguate periods and to recog-
nise ordinal numbers and abbreviations. The recognition of abbreviations
in languages with large compound nouns like German is enhanced by suffix
analysis.

1 Introduction

Tokenisation of text corpora is — at least for alphabetic languages — often con-
sidered trivial. In fact, a simple program which replaces whitespace with word
boundaries and cuts off leading and trailing quotation marks, parentheses and
punctuation already produces fairly good results. There is only one major prob-
lem: periods are not adequately dealt with. A period at the end of a token
is either part of the token in case of ordinal numbers (as in 2. International
Congress) or of an abbreviation (as in Mrs. Jones), or it is a full stop which
marks the end of a sentence, or it is both (as in the sentence The primary was
won by Ivan Allen Jr.).

The following heuristic is often used to disambiguate periods:

1. Leave the period attached



o if it is immediately followed by an alphabetic or numeric charac-
ter (i.e. the period is token-internal as in www.uni-stuttgart.de or in
12.07)

e if a known abbreviation precedes it as in Mr. or etc.

e if a lower case character or a punctuation character like , ; : 2 [
follows it as in etc., or in Mr. and Mrs. Jones

2. Cut off periods in all other cases.

This heuristic correctly disambiguates most periods. However, some problems
are still unsolved: Numbers with a trailing period are always classified as cardi-
nal numbers (cmp. the counter-example 2. International Congress) and sentence
boundaries after abbreviations are not detected. The most serious problem,
however, is that the list of abbreviations is incomplete because new abbrevia-
tions appear in almost every corpus. Therefore the list of abbreviations has to
be adapted to each corpus. Otherwise tokenisation results might be poor. So,
there is a need for a tokeniser which automatically adapts to new corpora and
achieves high accuracy with arbitrary types of text. Such a tokeniser will be
presented in this paper.

Several approaches were developed for period disambiguation in the past. Palmer
and Hearst [Palmer and Hearst, 1994] obtained 98.5 % accuracy on Wall Street
Journal data with a neural network. Michael Riley [Riley, 1989] reported 99.8 %
accuracy on the Brown corpus for his decision tree approach. Reynar and Rat-
naparkhi [Reynar and Ratnaparkhi, 1997] achieved 98.8 % accuracy on Wall
Street Journal data and 97.9 % on the Brown corpus with maximum entropy
modelling. A similar approach with slightly better results was presented in
[Mikheev, 1998].

In contrast to these methods, Grefenstette and Tapanainen’s semi-automatically
trained disambiguation method [Grefenstette and Tapanainen, 1994] requires
no hand-annotated training data. They reported 99.07 % correctly disam-
biguated sentence boundaries for the Brown corpus with a system which had
access to a lexicon and a list of frequent abbreviations. Andrei Mikheev re-
cently presented a part-of-speech tagger based approach to sentence boundary
detection and reports up to 99.80 % accuracy on the Brown corpus and 99.69 %
on Wall Street Journal data [Mikheev, 2000]. His system is also trained on
unlabelled data.

This paper describes a statistical period disambiguation method which requires
neither disambiguated training data nor lexica or any other information apart
from the corpus which is to be tokenised. In a first pass over the corpus, the
tokeniser extracts statistical information about likely abbreviations and names,
about lower-case words (which are good indicators for sentence boundaries when
they appear in capitalised form after a period), and about the frequency of



words before and after numbers (needed for number disambiguation). In the
second pass, the extracted information is used to disambiguate the periods in
the corpus. The presented method was evaluated on the Brown corpus and the
Wall Street Journal corpus.

The paper is organised as follows. Section 2 describes the disambiguation
method in detail. The evaluation results are presented in section 3 and com-
pared with other methods in section 4. Section 5 concludes with a summary.

2 Period Disambiguation

We distinguish four types of period occurrences which require disambiguation,
namely:!

1. w. w’ The period is preceded by a non-numeric token and followed by
a token which starts with a lower-case character like “Mr. and”.

2. w. W’ The period is preceded by a non-numeric token and followed by
a token which starts with something else than a lower-case character like
“Mr. Jones” or “etc.)” or “Okla. The”.
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3. z. w> The period is preceded by a number and followed by a token
which starts with a lower-case character like “I. of ”.

4. z. W’ The period is preceded by a number and followed by a token
which does not start with a lower-case character like “2. Congress” of “I.
He”.

The first case turned out to be more ambiguous than expected. On the one hand,
there were some words — like amnesty international in our German newspaper
corpus — which were always written in lower case even at the beginning of a
sentence. On the other hand, articles in our corpus were often followed by a
short sequence of lower-case letters which indicated the author of the article, so
that the last sentence of the article was followed by a lower-case token.

Disambiguation methods for the four cases are described in the following sec-
tions.

1We will use w and w’ for lower-case words and W and W’ for capitalised words. If both, w
and W appear in a formula, then W is the capitalised variant of w. The same holds for w’ and
W’.



2.1 Disambiguation of w. W’

We start with the second and most frequent case where the period is followed
by a token which does not start with a lower-case character. There are three
possibilities. Either the period belongs to an abbreviation or the period is a
full stop or it is both. If the sentence ends after the period and the next word
starts with an upper-case character, then two sub-cases have to be distinguished:
the next word is either always capitalised (like the word Jones) or only at the
beginning of a sentence (like the article The). If we want the tokeniser to “de-
capitalise” the next word in the latter case, then 5 possible outputs exist:

1. w. W? abbreviation + capitalised word as in “Mr. Jones”

2. w . W’ normal token + full stop + capitalised word as in “Department .
Richard”

3. w . w’ normal word + full stop + de-capitalised word as in “cruelty . the”
4. w. . W’ abbreviation + full stop + capitalised word as in “Rd. . Henry”
5. w. . W’ abbreviation + full stop + de-capitalised word as in “p.m. . the”
2.1.1 The Probability Model
In order to disambiguate between the five alternatives, we compute their prob-
abilities and then choose the most likely one. It will be convenient to divide the

probabilities by the term P(w .)P(w'). Assuming that words are independently
distributed (e.g. P(W'|w.) = P(W')), we obtain the following probability ratios

Plw. W) _ P(w)

3
3

P(w .) P(w') P(w .) P(w")

Pw . W' P .)PW) _B

Pw ) P(w') ~ P(w.) Pw)

Pw . w')  Pw .)P') _1

Pw ) Pw') ~ Pw .)Pw)

Pw. . W')  Pw.) pPW')

P(w .) P(w') ”_mw)POqu_ABPU
Pw. . w')  Pw.) P(w')

P(w .) P(w') ”_mw)POqu‘APO

where A = P(w.)/P(w .) and B = P(W')/P(w'). The tokeniser chooses the
analysis with the highest probability (ratio). The fourth expression is always
smaller than the first, so it will never be chosen. The most frequent cases are:



e A<1,B<1: outputw . w’
e A<1,B<1: outputw . W’

e A>1,B>1: output is w. W’

If A > 1 and B < 1, then the most likely output is usually (but not always)
w. . w’. It turns out that the results obtained with the following decision
table are almost identical? to the results obtained when the four probabilites
are actually computed and compared.

B>1 B<«1
A>1 | wW | w . w
A<l | w. W | w.w

If we define an abbreviation to be a word w. where P(w.) > P(w .) (i.e. w.
is more frequent than w at the end of a sentence) and further define that w is
a word if P(W) < P(w) (i-e. w is more frequent than W, then we obtain the
following intuitive disambiguation algorithm:

If w. is an abbreviation then
if w’ is a word then
print w. . w’
else
print w. W’
else
if w’ is a word then
print w . w’
else
print w . W’

2.1.2 Parameter Estimation

So far, we have not explained how the probability ratios P(w.)/P(w .) and
P(w)/P(W) are estimated from unlabelled training data. If we assume that
the probability of a word is the same at the beginning of sentences and within
sentences, then we can estimate P(w)/P(W) by the frequency ratio F/(w)/F (W)
where F(w) is the frequency of the word w within sentences and F(W) is the
frequency of the capitalised variant W within sentences.

P(w.)/P(w .)is more difficult to estimate because direct counting of w. and w .
requires disambiguated training data. However, even in unlabelled data, there
are cases which are almost unambiguous. If some potential abbreviation w. is

2Experimental accuracy was only 0.03 percent worse.



followed by a lower-case word or punctuation like , ; : 7!, then it is probably an
abbreviation. On the other hand, if a potential abbreviation often appears with-
out a trailing period, then is probably not an abbreviation. We will therefore
estimate the fraction P(w.)/P(w .) as follows:

P(w.) P(w. 1) P(w. 1) . Pw. 1) Fw. 1)

— ~
~

Pw ) Pw.L) Pw) P(L|w)  Pw) P(.L)  F(w) P(.L)

Q

The letter 1 matches any lower-case word, the letter L matches any capitalised
word which is normally written in lower case. F(w. 1) is the frequency of word
w occurring before lower case words. The probability P(. L) is easily estimated
from the corpus, once we know which words are normally written in lower case.

There is an important class of abbreviations which are not discovered well
enough by the presented method, namely titles. They typically occur before
names which are capitalised. So, most occurrences of titles are ambiguous and
not counted by this method. In order to detect titles, we need a different
method. If w. is not an abbreviation and therefore the period is a full stop,
then we expect that the ratio of “true” capitalised words (like Jones) and cap-
italised “lower case” words (like This) following w. is about the same as the
overall ratio at sentence start. If the ratio actually found for word w deviates to
much from this expectation, then it is likely to be an abbreviation.

U matches here any capitalised word form which rarely or never appears in
lower-case.

Abbreviations which appear predominantly at the end of a sentence are still not
detected, but they cause no major problems because they are so rare.

2.1.3 Suffix Analysis

In languages with a rich derivational morphology like German, there are many
abbreviations with common endings. Typical examples are German street names
like Kaiserstr., Azenbergstr., Holderlinstr.. The individual street names are too
rare to be reliably recognised as abbreviations. If we look at the endings, how-
ever, we will find that words ending in str. are likely to be abbreviations.

Therefore, we compute the probability ratio P(w.)/P(w .) not only for words
but also for word endings and a word w is considered an abbreviation if either
the estimate of P(w.)/P(w .) > 1 or the estimate of P(s.)/P(s.) > 1, where s
is the 3-, 4-, or 5-character suffix of w.



2.1.4 Smoothing

In some of the above formulas, we devide by a frequency term which could be
zero. Therefore, we smooth frequencies by adding a small constant (0.1). A
more sophisticated smoothing method is unlikely to improve the results very
much because the probability estimates are only rough approximations.

2.2 Disambiguation of w. w’

Now, we turn to the disambiguation of periods which are followed by lower-case
words. These periods are usually abbreviations, but there are a few exceptions.

e Some words are always written in lower case, even at the beginning of a
sentence like amnesty international.

e Sentences may be followed by something which is not a sentence, e.g.

— by an incomplete sentence in which the first half has been cut off
(caused e.g. by an editing mistake)

— by a list marker, e.g. a)

— by some other material e.g. a short sequence of lower case letters indi-
cating the author of the preceding article as in our German newspaper
Corpus

It is possible to automatically recognise tokens which appear in lower case at
sentence start if they are frequent enough. To this end, we count how often a
lower case token appears after an unambiguous full stop (i.e. where the preceding
token is not an abbreviation and therefore P(w .) is much larger than P(w.)).
Because “normal” lower-case words sometimes appear after a full stop (e.g.
because of editing mistakes), we have to compare the frequency after full stops
with the overall frequency of the word. We classify a lower-case word w as one
of those words which are written in lower case at the beginning of a sentence if

F(.w) > log((F(w) — F(.w) +1)

This heuristic worked very well. Tt correctly recognised this type of lower-case
tokens in our German corpus even when an identical and more frequent “normal”
word existed without generating false positives.

The disambiguation rule for periods which are preceded by a non-numeric token
x and followed by a token y is then:

If x. is an abbreviation or has an abbreviation suffix then



if y is the capitalised form of the lower-case word w’ then
print x. . w’
else
print x. y
else if y is a lower-case token or a punctuation character then
if y is always written in lower-case then
printx . y
else
print x. y
else
printx . y

2.3 Disambiguation of z. W

A similar statistical disambiguation method was developed for periods occurring
after numbers. These periods are either part of an ordinal number or they mark
the end of the sentence or both. We ignore the last possibility for the moment
and develop a disambiguation method for the first two cases.

2.3.1 The Probability Model

Disambiguation between ordinal and cardinal numbers requires more context
than disambiguation of abbreviations because the word preceding the number
often provides more information for the disambiguation than the number itself
(cmp. Schillerstrafie 2. (Schiller Street 2.) vs. am 2. (on the 2.)). Therefore,
we compute the probability ratio

Pwz W) ~ Pwz)PW'|z) _ Pw z)Pk W) Pk P()
Pw z . W)~ P(w 2) P(.|2) P(W'|.)  P(w z) P(. W') P(z.) P(z .)

We assume here that a token depends only on the preceding token (and not
on the last but one). We make the further assumption that PI(JZ(')_) ~ PI(DZ(' .L}J).
Again, we use the letter L to subsume any capitalised word which would be

written with lower-case characters within a sentence.
Plw z. W)  Pw z) Plz. W') P(z) P(. L)
Pw z . W) ~ Pwz) P(.WY) P(z) P(z.L
——— ——— ——

C D E F

)

We classify a number as an ordinal number if the ratio is larger than 1. Other-
wise it is a cardinal number at the end of a sentence.



2.3.2 Parameter Estimation

The factor F is estimated by dividing the frequency of . L by the frequency of
z . L. We count each number which is followed by a period and a capitalised
“lower-case” word as a cardinal number and ignore the less frequent case in
which z. is an ordinal number at the end of a sentence.

In order to estimate P(w z.)/P(w z) (factor C above), we assume that P(l|w z.) =
P(l) (i.e. that the probability of lower-case words after ordinal numbers is the
same as the overall probability of lower-case words). Then we get

P(w z.) _ P(w z.1) ~ P(w z.1) ~ Fwz.1)
Pwz) P(wz)Pllwz) Plwz)P(l) Fwz)P()

In other words, we count how often w z. appears before a lower-case word and
devide by the frequency® of w z and the probability of lower-case words.

Factor D is estimated by the ratio F'(z)/F(z.). The frequencies F(z) and F(z.)
are obtained by summing the frequencies F(w z) and F(w z.) (see above) for
all words w.

Finally, we have to estimate factor D. If x matches any token such that x. is
not a token, and if almost all tokens in sentence-final position are matched by
x, then P(. W') can be estimated as follows

P(.W')~P(z.W')~ F(z . W')/N

It remains to estimate P(z. W'). This is difficult because z. W’ is ambiguous:
the period might be a full stop. Sometimes, the word which precedes z is
a strong indicator in either direction, but we cannot rely on this information
because for many W’ such indicators might be missing. Instead we count how
often W’ appears after z. (without disambiguating the number) and compare
the resulting frequency with the frequency which we would expect if z were
always a cardinal number. The expected frequency is computed as follows

P(z.L

Feap(z . W') = P(z.W)N=~P(z.) P(W'|.)N = P(ng P(W'|.) N
P(z.L) , - P(W') F(z. W'
WP(WL)NNF(z.L)mNF(z.L)m

If the observed frequency is significantly higher than the expected frequency,
then we can use the difference between the observed and the expected frequency

3We simply use the frequency of w z within sentences. It would be more accurate to
multiply this frequency by 1 — P(.) in order to account for possible occurrences of w z at the
end of a sentences.



as an estimate for F(z. W'). Otherwise, P(z. W') cannot be estimated and the
fallback method below has to be used.

[F(z. W') — Fegp(z. W)]/N if F(z. W') is significantly larger
P(z. W' = than expected

undefined otherwise

2.3.3 Fallback Strategy

If P(w z.)/ P(w z) cannot be estimated reliably because the frequencies F(w z.)
and F(w z) are too small, then we ignore w and use the following ratio for
disambiguation:
P(z.W') _P(z.) P(z. W') P(z) P(.L) _ Pz W) P( L)
P(z.W') ~ P(z) P(. W) P(z) P(z. L) P(_ W' P(z.L)
D F

If P(z. W')/P(. W') cannot be estimated, then we use the formula

Pwz. W) Pwz) PWlz)  Pwz) PW") 1
Pw z . W) P(w z) P(|z) P(W'|.) = P(w z) P(w')+P(W') P(|2)
C =G

where P(w') is the probability of the lower-case variant of W> if W’ is a capitalised
token. Otherwise P(w') := 0.

Because we do not know the probability of W’ after z., we assume that it does
not differ from the overall probability P(W'). We further assume that the prob-
abilities of W?> and w’ after full stops are identical to their apriori probabilities.
P(W') and P(w') are easily estimated by their within-sentence frequencies. In
order to estimate 1/P(.|z), we use the approximation

1 P(2) P(z) P(L|z.) P(z) P(L|.) F(2)
= = ~ ~ P(L].)
P(.|z) P(z.) P(z.L) P(z.L) F(z.L)
The fallback method for the computation of the probability ratio is therefore
Plw z. W) Pw z.) PW") F(z)
SR ; - P(L].)
Pw z . W'  Pw z) Plw')+PW') F(z.L)
—_— ————
c G

2.3.4 Equivalence classes
There are so many numbers that the above parameters cannot be estimated

for all of them. However, numbers fall into a few classes with similar distribu-
tional properties within the classes. Therefore, we define equivalence classes and
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estimate the parameters for the equivalence classes rather than the individual
numbers. The following equivalence classes are used:

e 1,2,..,12, 01, 02, ..., 09 These numbers could be days or months in
dates.

e 13, 14, ..., 31 These numbers could be the days in dates.

e 1900, 1901, ..., 1999 These numbers could be the years* in dates.

e 32, 33, ..., 1899, 2000, 2001, ...

¢ 0.00, 0.01, ..., 23.59 These numbers could be time specifications.

e numbers containing commata

e numbers containing periods (excepted those above)

e numbers containing colons (:)

e numbers containing slashes (/)

e numbers containing blanks like 600 501 01

e all other numbers

Wherever a z appears in the disambiguation formulas of chapter ??, it has to
be replaced with its equivalence class [z].

2.3.5 Sentence-Final Ordinal Numbers

So far, we have ignored that ordinal numbers may appear at the end of a sen-
tence. In order to detect this case, we first compare the probability of the
sentence-final ordinal number with the probability of the cardinal number. We
assume that the probability of periods is the same after cardinal and after or-
dinal numbers. Then it is sufficient to look at the preceding word in order to
disambiguate.

P(wz. . W') ~ P(w z.) P(.|z.) P(W'|.) ~ P(w z.)
Pwz. W) P(w z) P(.|]z) P(W'].)  P(w 2)
c

4Sorry, this algorithm is not yet Y2K compatible.
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Now we compare the probability of a sentence-internal and a sentence-final
ordinal number. We assume that the probability of W’ and w' is the same after
periods and after ordinal numbers.

Pwz..W') Pwz) P(W|) _ P(W') + P(w')
P(wz. W) - P(w z.) P(W’|z_)P('|z') ~ POV P()
1/G

We only choose a sentence-final ordinal number if the next word W’ is a strong
indicator for a sentence boundary, i.e. if P(w') is much larger than P(W').

For the disambiguation of numbers, we use the following decision rule which
outputs ordinal numbers in sentence-final position only when they are more
likely than both alternatives.

if Pwz. . W/Plwz.W')>1and P(wz.. W')/P(w z. W') > 1 then
outputw z. . W’
else
if P(wz. W")/P(wz.W') >1 then
output w z. W’
else
outputw z . W’

2.4 Disambiguation of z. w

All numbers which are followed by a period and a lower case token are classified
as ordinal numbers without a sentence boundary. We ignore here the rare cases
where a lower case token appears after a sentence boundary.

2.5 Further Improvements

The method presented so far worked very well for our German newspaper cor-
pus. Because no manually disambiguated German test corpus was available for
evaluation, the method was tested on the Penn Treebank version of the Brown
corpus as described in section 3. The resulting error rate on this corpus was
0.9 %.

This is quite good compared to most other approaches. However, an analy-
sis of the errors revealed that improvements were possible. 23 percent of the
errors were caused by incorrectly disambiguated numbers. It turned out that
periods after numbers are not ambiguous in the Brown corpus because they
are always classified as sentence boundaries (similar in the Wall Street Journal
corpus discussed later). Therefore, the presented disambiguation method for

12



numbers turned out to be useless for English and it was replaced by a simple
heuristic which cuts off periods after numbers unless the period is followed by
a lower-case character or a punctuation character.

Another frequent error was incorrect disambiguation of single uppercase letter
which are followed by a period. These tokens are ambiguous because they
are either part of a name as in Henry L. Bowden or they are full stops as
in We obtain an equation in terms of H. Therefore a name recogniser was
developed based on an idea of Andrei Mikheev [Mikheev, 1999] which extracts
likely names from the corpus during the first pass. The period disambiguator
was augmented by a heuristic which classifies an uppercase token which ends
with a period as an abbreviation (example: John W. Ball) if

e it is one of the recognised names or a sequence of the form letter + period
+ letter ... of length 2 or more (like L. or C.J.) and

e the token after the period is also a name.
unless

e the token is a name which typically occurs at the end of a name sequence
(like Co.) and

e the next token is a name which typically occurs at the beginning of a name
sequence (like Mr.)

in which case the token is classified as an abbreviation at a sentence boundary
asin ‘‘...McDonald & Co. Mr. Sheridan...’’ This method works only for
languages like English where proper names are the only capitalised words but
not e.g. for German.

Another class of abbreviations which were not recognised very well are abbrevia-
tions like No. which appear predominantly before numbers. In order to enhance
the recognition of these abbreviations, a function was added which counts how
often potential abbreviations appear before numbers (F(w. z) where z matches
any number) and compares it to the number of occurrences of the potential
abbreviation at the end of a sentence (F'(w. L) where L matches any capitalised
token which is more frequent when written in lower case). Tokens found by this
method are classified as abbreviations if they appear before numbers.

The evaluation results reported in the next section were obtained with a version
of the tokeniser which included these enhancements and the simplified method
for the disambiguation of numbers.
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3 Evaluation

The presented period disambiguation method was evaluated on the tagged ver-
sion of the Brown corpus and the Wall Street Journal corpus which are part
of the Penn Treebank corpus [Marcus et al., 1993]. A reference corpus for the
period disambiguation task was obtained by discarding the part-of-speech and
noun phrase information from this corpus. An untokenised version of the Brown
corpus was restored from the reference corpus by removing blanks between
punctuation and preceding words, removing full stops which are preceded by
an abbreviation with a final period® and so on. Several tokenization errors in
the reference corpus were corrected. 0.2 percent of the ambiguous periods were
affected by these corrections.

After preparing the Brown corpus, the tokenizer was trained on the restored
version. The Brown corpus was then retokenized. The result was compared to
the reference corpus.

Overall, the Brown corpus contained 1164625 tokens and 53747 periods which
had to be disambiguated. Token-internal periods like 14.2 or U.N.-chartered
were not evaluated because they are unambiguous. The tokenizer made 162
mistakes which translate to an accuracy of 99.70 %. The accuracy wrt. sentence
boundary detection was 99.79 %.5

54 errors were due to unrecognised abbreviations. The most frequent ones were
La. (7 errors), in. (4 errors) and Miss. (3 errors). All of these were not recog-
nised because of ambiguities. La e.g. appears in foreign names and expressions
like La Dolce Vita.

27 errors were caused by errorneous insertion of a sentence boundary in names
as in Mr. . Average Citizen. These errors occurred if the name after the
period was not recognised during training and the lower case form of the name
was frequent.

20 errors were caused by single upper-case letters which were part of enumera-
tions. These enumeration items were often mistokenised as abbreviations with
or without a following full stop, whereas the respective periods in the Penn
Treebank version of the Brown corpus were cut off from the preceding upper
case letter.

16 tokens (among them hel”, oui, Rak, I, ell, hon, Wow, Hap, 1b (2 times), Mass,
Pa (4 times) and fig) were misclassified as abbreviations. 40 errors occurred
because a sentence boundary after an abbreviation was not recognised.

5The period is duplicated in the Brown corpus when an abbreviation appears at the end
of a sentence.

6Sentence boundary detection is easier because it is not an error when an abbreviation in
sentence-final position is not recognised. Furthermore sentences ending with an exclamation
mark or question mark increase the number of correctly recognised sentence boundaries.

"the intentionally misspelled word hell
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The same evaluation was carried out on sections 2 through 6 of the Wall Street
Journal corpus which were also used by Palmer and Hearst [Palmer and Hearst, 1994]
and by Reynar and Ratnaparkhi [Reynar and Ratnaparkhi, 1997] and by An-
drei Mikheev [Mikheev, 2000]. The whole WSJ corpus was used for training.
Again, a couple of tokenisation errors had to be corrected. The resulting accu-
racy wrt. sentence boundary detection was 99.56 % (61 errors). The accuracy

on the whole WSJ corpus was 99.62 %. Period disambiguation accuracy could

not be determined for the WSJ corpus because abbreviations in sentence-final
position are not marked in the WSJ.

4 Comparison

The results in [Grefenstette and Tapanainen, 1994] and in [Mikheev, 2000] can
be directly compared to ours because their methods also require no labelled
training data. Grefenstette and Tapanainen report 98.35 % accuracy for sen-
tence boundary detection in the Brown corpus when no lexicon and no pre-
compiled list of abbreviations was used (99.07 % with these additional sources
of information). Andrei Mikheev reports 99.80 % accuracy on the Brown cor-
pus and 99.69 % on WSJ data. These are the best results we know of. Qur
method achieves almost the same accuracy as Mikheev’s on the Brown cor-
pus, but 30 percent lower accuracy on WSJ data. In contrast to Mikheev’s
method which requires a lexicon with part-of-speech information for the target
language, our method is applicable to any language using the Latin alphabet
without modification®.

5 Summary

A period disambiguation method was presented which achieved high accuracy
without prior knowledge of the corpus, the domain or the language. The pre-
sented method extracts a list of likely abbreviations, a list of likely names, a
list of lower-case words, statistics about the preceding and following words of
numbers and other information from the raw corpus data by statistical means.
The extracted information is used to tokenise the corpus in a second pass. The
accuracy of the presented method was as good or better than all but one of the
other methods we know of, and none of them matched it wrt. adaptability to
other languages.

81t might be useful to turn on or off some of the mentioned heuristics in order to get
optimal results.
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