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Chapter 1

Introduction

LoPar is a parser for probabilistic context-free grammars (PCFGs) and head-lexicalised

probabilistic context-free grammars (HPCFGs). Possible applications of this program are

symbolic parsing with CFGs, training of (head-lexicalised) PCFGs, statistical parsing with

(head-lexicalised) PCFGs, Viterbi parsing with (head-lexicalised) PCFGs, part-of-speech

tagging and chunking.

This report is mainly a documentation of the parser implementation and the underlying

theoretical concepts and not a manual for the LoPar program. For the latter, the reader is

referred to the online manual pages.

1.1 Relationship to the Galacsy Tools

The functionality of LoPar is comparable to that of the Galacsy tools supar, ultra, hypar,

showWords and showRules, which have been developed by Glenn Carroll. However, LoPar

is faster and has additional functionality. The �le formats of LoPar and the Galacsy tools

di�er and a conversion is only possible for unlexicalised grammar �les.
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Chapter 2

Probabilistic Context-Free

Grammars

A probabilistic context-free grammar is a context-free grammar which assigns a probability

P (r) to each grammar rule r. In order for P to be a probability distribution, it is required

that the probabilities of all rules with the same left hand side add up to 1.

The probability of a parse tree is de�ned as follows.

P (T ) =

Y

rule r

P (r)

F (r)

F (r) is the number of times, rule r has been used to generate T.

In contrast to CFGs, a PCFG is able to rank di�erent analyses of a sentence according to

their probability. The ranking is used e.g. to reduce a large number of possible analyses to

a small set of likely analyses for further processing. However, PCFGs fail to resolve many

frequent syntactic ambiguities like PP attachment ambiguities and coordination ambigui-

ties, because the same probability is assigned to two analyses which apply the same rules in

di�erent order. The phrase the man on the hill with the telescope where the prepositional

phrase with the telescope could attach to either one of the preceding noun phrases is an

example. Disambiguation of these ambiguities requires information about the lexical heads

of the constituents, as Hindle and Rooth [Hindle and Rooth, 1993] show. Head-lexicalised

probabilistic context-free grammars (HPCFGs) [Carroll, 1995, Carroll and Rooth, 1998]

deal with this problem.

2.1 Head-Lexicalised Probabilistic Context-Free Gram-

mars

Syntactically, a head-lexicalised probabilistic context-free grammar (HPCFG) is a proba-

bilistic context-free grammar (PCFG) in which one of the categories on the right hand side

of each grammar rule is marked as the head with an apostrophy (').

Example: NP ! DT N'
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Each constituent bears a lexical head, which is propagated from the head daughter. The

lexical head of a terminal node is the respective word form.

HPCFGs assign the following probability to a parse tree T:

P (T ) = P

start

(cat(root(T ))) �

P

start

(head(root(T )) j cat(root(T ))) �

Y

nonterm n in T

P

rule

(r j cat(n); head(n)) �

Y

nonroot n in T

P

choice

(head(n) j cat(n); cat(parent(n)); head(parent(n))) �

Y

term n in T

P

rule

(htermi j cat(n); head(n)) � P

lex

(word(n) j cat(n); head(n))

Five families of probability distributions are relevant here. P

start

(C) is the probability

that C is the category of the root node of the parse tree. P

start

(hjC) is the probability

that a root node of category C has lexical head h. P

rule

(rjC; h) is the probability that a

node of category C with lexical head h is expanded with rule r. P

choice

(hjC;C

p

; h

p

) is the

probability that a (non-head) node of category C bears the lexical head h given that the

parent category is C

p

and the parent head is h

p

. P

rule

(htermijC; h) is the probability that

a node of category C with lexical head h is a terminal node. P

lex

(wjC; h), �nally, is the

probability that a terminal node with category C and lexical head h expands to the word

form w. If the lexical head of a terminal node is the word form, then P

lex

(wjC; h) is 1 if w

and h are identical and 0 otherwise.

2.2 Relationship between HPCFGs and PCFGs

It is possible to convert a HPCFG into an equivalent PCFG by means of the following

construction:

1. Start with an empty PCFG.

2. Add the start symbol TOP to the PCFG.

3. If C is a start symbol of the HPCFG, then add a rule TOP ! hC,hi for each lexical

head.

4. If A ! B

1

:::B

0

i

:::B

n

is a rule of the HPCFG and h is a lexical head, then add a

rule hC; hi ! hB

1

; C; hi:::hB

i

; hi:::hB

n

; C; hi. (Note the di�erence between head and

non-head items on the right hand side of the rule.)

5. For each pair of categories A and B such that the HPCFG contains a rule A !

:::B:::, where B is not the head, add a rule hB;A; hi ! hB; h

0

i to the PCFG for each

combination h and h' of lexical heads.

6. For each lexical entry of the form A ! w and each lexical head h, add a lexical

entry hA; hi ! w if h is equal to w (or if h is a stem of w given category A in case of

lemmatisation, see section 2.4).
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The above construction will return a PCFG which is not minimal, i.e. which contains

rules that can not be used in building a well-formed parse tree. A verb phrase with

probabilistic as lexical head, e.g., will never be part of a parse tree. In order to minimise

the size of the PCFG, it is necessary to restrict the set of lexical heads to those which can

actually project to a node of the respective category.

2.3 Unknown Words

LoPar considers all unknown words as a single token <unknown> which propagates

<unknown> as lexical head. The word form probability P

lex

(hunknownijC; hunknowni)

is 1. In order to get a true probability model for the actual input string { as required

in language modelling { P

lex

(hunknownijC; hunknowni) has to be replaced by a probabil-

ity distribution P

lex

(wjC; hunknowni) which assigns probabilities to an in�nite number of

possible unknown words w.

A probability distribution for unknown words could be built as follows.

1. Train an n-gram language model L

n

(C) of character sequencies on all words (types,

not tokens) of category C.

2. Compute the sum S of the probabilities which L

n

(C) assigns to the words of category

C in the lexicon.

3. Divide the probabilities P

L

n

(C)

(w) which L

n

(C) assigns to words by 1 � S in order

to get the probability distribution P

lex

(wjC; hunknowni).

2.4 Lemmatisation

One of the major problems in training HPCFGs is the large number of parameters which

have to be estimated from a limited amount of training data. The number of parameters

is reduced considerably if stems are used as lexical heads rather than inected word forms,

increasing the reliability of the parameter estimates. This is in particular true for languages

with a rich morphology like German.

When the lexical heads are stems, the word form probability distribution P

lex

(wjC; h) is not

trivial anymore because several word forms could have the same stem and part of speech

(just assume that all numbers have the same stem). The P

lex

parameters therefore have to

be estimated from training data like other parameters.
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Chapter 3

Parsing

LoPar is an implementation of the well-known left-corner parsing algorithm for context-free

grammars (see e.g. [Graham et al., 1980]). The chart is organised as a two-dimensional

array of lists. Each list is a linked list of edges. Each edge contains information about

its start position, the grammar rule and the \dot" position (the position after the last

daughter constituent which is covered by the edge). The �rst dimension of the array of

lists corresponds to the end position of the edges, the second dimension corresponds to the

category of the next item after the dot.

The chart representation maximises the e�ciency of the complete operation of the left-

corner parser. Whenever a new constituent has been found, the completer is invoced with

the list of edges ending at the start position of the new constituent and expecting the new

constituent.

Before a new edge is inserted into the chart, the parser has to check whether the edge has

been inserted before. In order to avoid a scan of the whole list into which the new edge is

to be inserted (usually a costly operation), the parser stores the edges (or rather pointers

to them) additionally in a hash table. By means of the hash table it is possible to perform

the check for duplicates in approximately constant time

1

.

The recognised constituents are stored in a hash table, as well. Whenever a new complete

edge has been found, a new constituent is inserted into the hash table unless a constituent

of the same category and with the same span has been inserted before. In order to build

the parse forest, the parser also adds a link from the constituent to the new edge. Similar

links are added to the edges.

3.1 Parse Forest Representation

The parse forest, a compact representation of the parsing result, is internally stored in the

following way (cmp. �g. 3.1): Each constituent of the parse forest either dominates a word

form (terminal node) or a set of passive edges (nonterminal node). Each edge dominates a

1

Of course, the runtime will be worse if the hashing function is unable to distribute the hashed items

evenly. So far, this problem has not been observed.
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VP

V

NP

VP->VP PP.VP->V NP.

VP->V NP. VP->V NP.

VP->V.NP

VP->V.NP

constituent

edge

subedge

Figure 3.1: internal parse forest representation

list of subedges. Each subedge either dominates an (active) edge and a constituent or only

a constituent if this constituent is the left-most daughter node.

3.2 Lexicalisation

In case of lexicalised parsing, the context-free parse forest has to be lexicalised after parsing.

Ambiguous constituents may have more than one lexical head. Therefore the lexicalised

parse forest will { in general { have a more complex structure than the unlexicalised parse

forest.

LoPar computes the lexicalised parse forest in a single pass through the parse forest. Each

node (constituent or edge) of the unlexicalised parse forest is linked to its lexicalised clones.

Whenever a node of the unlexicalised parse forest is visited during lexicalisation, LoPar �rst

lexicalises the child nodes recursively. Then it generates a new node for each combination of

the lexicalised clones of its daughter nodes and inserts it into the new parse forest using the

same hash table-based functions as for the generation of the unlexicalised parse forest. If

the same node (same span, same category/dotted rule, same lexical head) has been inserted

before, then, again, only a link to the new analysis is added. The unlexicalised parse forest

is preserved during lexicalisation.

There is a problem, however: During the lexicalisation of subedges which do not cover

the head of the rule, the lexical head is still unknown. The lexicalisation of these nodes

therefore has to be delayed until the head information is available.
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Chapter 4

Parameter Estimation

The parameters of lexicalised as well as unlexicalised probabilistic context-free grammars

are iteratively estimated with the Inside-Outside algorithm [Lari and Young, 1990], which

is an instance of the Expectation-Maximisation (EM) algorithm [Baum, 1972]. Each iter-

ation of the Inside-Outside algorithm constists of two steps, namely frequency estimation

and parameter estimation.

Lexicalised probability models are estimated with a bootstrapping approach. We �rst

train the unlexicalised PCFG starting with a randomly initialised model. Then we generate

lexicalised frequencies with the PCFG in order to obtain start values for the �nal lexicalised

training.

4.1 Parameter Estimation for PCFGs

PCFGs encompass probability distributions for start events P

start

(C), rule events P

rule

(r)

and lexical events P

lex

(wjC). The probabilities of these events are estimated based on esti-

mated frequencies. The simplest estimation formula is theMaximum-Likelihood-Estimation

(MLE) algorithm, which divides the frequency of an event by the sum of the frequencies of

all competing events.

P (e) =

F (e)

P

0

e

F (e

0

)

MLE assigns zero probability to all unobserved events. A HPCFG has so many parameters,

however, that many or even most of the corresponding events do not occur in the training

corpus. These unobserved events should get a positive probability because a new corpus is

likely to contain some of them. More sophisticated estimation techniques which \smooth"

the probability distributions will be discussed in section 4.4. The estimation of the event

frequencies is discussed in section 4.3.3.
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4.1.1 Inside Probabilities

The inside probability of a terminal constituent c of category C, which expands to the word

form w is de�ned as follows:

P

inside

(c) = P

rule

(htermijC)P

lex

(wjC)

The inside probability of a non-terminal constituent of category C, is the sum over the

inside probabilities of all (passive) edges which produce this constituent multiplied by the

probabilities of the respective rules.

P

inside

(c) =

X

e

P

inside

(e)P (rjC)

The inside probability of an edge e is the sum over the inside probabilities of all its subedges

s

1

.

P

inside

(e) =

X

s

P

inside

(s)

The inside probability of a subedge s is the product of the inside probability of the daughter

constituent c and the daughter edge e (if present, otherwise 1).

P

inside

(s) = P

inside

(e) P

inside

(c) if subedge e exists

P

inside

(s) = P

inside

(c) otherwise

The overall probability of the parse forest is the sum over the inside probabilities of all root

nodes c multiplied by the start symbol probabilities of the respective categories C:

P (T ) =

X

root node c

P

inside

(c) P

start

(C)

4.1.2 Outside Probabilities

The outside probability of a root node of category C, is equal to the start symbol probability

P

start

(C) of the respectice category C.

P

outside

(c) = P

start

(C)

The outside probabilities of the other events in the parse forest are initialised to zero and

then computed while the parse forest is traversed in \prerequisite" order (see section 4.1.4).

For each non-terminal constituent c of category C, the parser runs through all passive

(complete) edges e which produce this constituent and adds the product of the outside

probability of c and the probability of the respective grammar rule r to the outside prob-

ability of e.

P

outside

(e) += P

outside

(c) P

rule

(rjC)

1

The parser does not actually store the subedge probabilities.
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For each edge e, the parser runs through all subedges s and adds to the outside probability

of the respective child constituent c the product of the outside probability of e times the

inside probability of the child edge e' of subedge s (if present, otherwise 1).

P

outside

(c) += P

outside

(e) P

inside

(e

0

) if e' exists

P

outside

(c) += P

outside

(e) otherwise

Then we add the product of the outside probability of e times the inside probability of the

child constituent c of s to the outside probability of the child edge e' (if present):

P

outside

(e

0

) += P

outside

(e) P

inside

(c)

4.1.3 Estimated Frequencies

The estimated frequency of a start event related to some root constituent c of category C

is equal to the product of its inside probability and its outside probability divided by the

overall probability P (T ). The start frequencies are accumulated in F

start

(C).

F

start

(C) += P

inside

(c) P

outside

(c) = P (T )

The estimated frequency of a rule event r related to some passive edge e which is dominated

by a constituent of category C, is equal to the product of its inside probability and its outside

probability divided by the overall probability P (T ).

F

rule

(r; C) += P

inside

(e) P

outside

(e) = P (T )

The estimated frequency of a lexical event related to some terminal constituent c of category

C is equal to the product of its inside probability and its outside probability divided by the

overall probability P (T ).

F

lex

(w;C) += P

inside

(c) P

outside

(c) = P (T )

Finally, we derive the frequency that a constituent of category C is terminal.

F

rule

(htermi; C) =

X

w

F

lex

(w;C)

4.1.4 Topological Sorting

In order to compute the outside probabilities, we have to traverse the parse forest in

prerequisite order, i.e. before a node is processed, the processing of all parent nodes must

have been completed. This ordering of the nodes is called a topological ordering .

The topological sorting algorithm presented in [Cormen et al., 1994] has been adapted for

LoPar. It requires a counter for each node of the parse tree. The counters are initialised

to 0. In a �rst pass, the parse forest is traversed top-down and whenever a node is visited,
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its counter is incremented. If the node is visited the �rst time (i.e. the counter value is 1),

then its child nodes are visited, as well, from left to right.

After this �rst pass, the counters contain the number of parent nodes for each node. The

outside probabilities are computed in a second top-down pass. Whenever a node is visited,

its counter is decremented and { if the counter is 0 afterwards { the computations pertaining

to this node are performed and the child nodes are visited.

4.2 Lexicalised Frequency Estimation with PCFGs

In the last iteration of unlexicalised training, the parser computes lexicalised frequencies in

order to obtain start values for the subsequent training of the head-lexicalised PCFG. The

computation parallels that for unlexicalised frequencies with the exception of the lexical

choice frequencies F

choice

(h;C;C

p

; h

p

) which have no correspondence.

� lexicalised start event frequencies (c is a node with category C and lexical head h).

F

start

(C; h) += P

inside

(c) P

outside

(c) = P (T )

� lexicalised rule event frequencies (e is a passive edge with category C on the left side

of the rule and lexical head h).

F

rule

(r; C; h) += P

inside

(e) P

outside

(e) = P (T )

� lexical choice event frequencies. These are related to subedges in the parse forest.

C

p

is the category on the left side of the corresponding rule, C is the category of

the daughter constituent which must not be the head, and e is the left subedge (if

present, otherwise P

inside

(e) is 1).

F

choice

(h;C;C

p

; h

p

) += P

outside

(s) P

inside

(e) P

inside

(c) = P (T )

� lexicalised word event frequencies

F

lex

(w;C; h) += P

inside

(c) P

outside

(c) = P (T )

4.3 Frequency Estimation with HPCFGs

4.3.1 Inside Probabilities

The inside probabilities in a head-lexicalised parse forests are computed as follows:

� inside probabilities of terminal constituents:

P

inside

(c) = P

rule

(htermijC; h) P

lex

(wjC; h)
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� inside probability of non-terminal constituents:

P

inside

(c) =

X

e

P

inside

(e)P (rjC; h)

� inside probability of edges:

P

inside

(e) =

X

s

P

inside

(s)

� inside probability of subedges s where the daughter constituent c is the head:

P

inside

(s) = P

inside

(e) P

inside

(c) if subedge e exists

P

inside

(s) = P

inside

(c) otherwise

� inside probability of subedges s where the daughter constituent c is not the head:

P

inside

(s) = P

inside

(e) P

choice

(h

d

jC

d

; C; h) P

inside

(c) if subedge e exists

P

inside

(s) = P

inside

(c) P

choice

(h

d

jC

d

; C; h) otherwise

� overall probability of the parse forest:

P (T ) =

X

root node c

P

inside

(c) P

start

(C) P

start

(hjC)

4.3.2 Outside Probabilities

The outside probability of a root node:

P

outside

(c) = P

start

(C) P

start

(hjC)

For each non-terminal constituent c of category C, the parser runs through all passive

(complete) edges e:

P

outside

(e) += P

outside

(c) P

rule

(rjC; h)

For each edge e, the parser runs through all subedges s and updates the outside probabilities

of the non-head daughter constituents:

P

outside

(c) += P

outside

(e) P

inside

(e

0

) P

choice

(h

d

jC

d

; C; h) if e' exists

P

outside

(c) += P

outside

(e) P

choice

(h

d

jC

d

; C; h) otherwise

Then the parser updates the outside probabilities of the dominated edge e

0

:

P

outside

(e

0

) += P

outside

(e) P

inside

(c) P

choice

(h

d

jC

d

; C; h)

If the daughter constituent of e is the head then the parser adds

P

outside

(c) += P

outside

(e) P

inside

(e

0

) if e' exists

P

outside

(c) += P

outside

(e) otherwise

and

P

outside

(e

0

) += P

outside

(e) P

inside

(c)
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4.3.3 Estimated Frequencies

The estimated frequency of a lexicalised start event related to some root constituent c of

category C is computed as:

F

start

(C; h) += P

inside

(c) P

outside

(c) = P (T )

The estimated frequency of a lexicalised rule event r related to some passive edge e:

F

rule

(r; C; h) += P

inside

(e) P

outside

(e) = P (T )

The estimated frequency of a lexical event related to some constituent c:

F

lex

(w;C; h) += P

inside

(c) P

outside

(c) = P (T )

The estimated frequency of a lexical choice event where c is the daughter constituent of

some subedge s and not the head:

F

choice

(h

d

; C

d

; C; h) += P

outside

(e) P

inside

(e

0

) P

inside

(c) P

choice

(h

d

jC

d

; C; h) = P (T )

4.4 Parameter Smoothing

As mentioned earlier, it is necessary to assign a positive probability to events which are not

observed in the training corpus. LoPar uses a variant of the absolute discounting method

[Ney et al., 1994] for this purpose.

4.4.1 Absolute Discounting

The basic idea of absolute discounting is to subtract a small value (the discount) from

all frequency counts and to redistribute the sum of these discounts over the events with

zero frequency according to some backo� distribution. The absolute discounting method

was adapted in order to be applicable to the real-valued counts generated by LoPar. The

following method was implemented:

N

0

is the number of types whose frequency F (t) is below 0.9.

N

1

is the number of types whose frequency F (t) is between 0.9 and 1.9.

N

2

is the number of types whose frequency F (t) is between 1.9 and 2.9.

N is the total frequency.

The discount d, which is subtracted from the positive counts, is computed according to the

following formula presented in [Ney et al., 1994]:

d := N

1

=(N

1

+ 2N

2

)

The discounted frequencies F

0

(t) are obtained by subtracting the discount:
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D := 0

for all types t do

if F (t) > d then

F

0

(t) := F (t)� d

D := D + d

else

F

0

(t) := 0

D := D + F (t)

The probability of a type t with a positive discounted frequency F

0

(t) is then de�ned as:

P (t) := F

0

(t)=N

Finally, the backo� factor � is calculated.

� = D=N=

X

t;F

0

(t)=0

P

backoff

(t)

The probability of a type with a discounted frequency of 0 is then:

P (t) = � P

backoff

(t)

If the backo� probability distribution is uniform, then the probability of types with dis-

counted frequency 0 is computed directly:

P (t) = D=N=N

0

If either N

1

or N

2

is 0 or if the resulting frequency for events with corpus frequency 0 is

higher than that for events with corpus frequency 0.9, then a di�erent smoothing method

is used which replaces zero frequencies in the original counts by a small constant.

4.4.2 Backo� Distributions

LoPar implements the following backo� strategies.

� P

start

(hjC) is smoothed with a uniform backo� probability distribution

^

P

start

(hjC) =

1=hc(C), where hc(C) is the number of possible heads of C.

� P

rule

(rjC; h) is smoothed with P

rule

(rjC) (the unlexicalised rule probability) as back-

o� distribution.

� P

choice

(hjC;C

p

; h

p

) is iteratively smoothed with P

choice

(hjC;C

p

), P

choice

(hjC) and a

uniform distribution P

choice

(hjC) = 1=hc(C) as backo� probabilities.

� P

lex

(wjC; h) is smoothed with a uniform backo� distribution P

lex

(wjC; h) =

1=wc(C; h), where wc(C;H) is the number of lexical entries with category C and

head (lemma) h.
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4.4.3 Computation of the Number of Possible Heads

The number of possible lexical heads of the categories is computed with a bit-vector repre-

sentation. The parser allocates a bit vector v

C

with as many bits as there are lexical heads

for each category C and initialises it to 0. Then it sets for each lexical entry with category

C and lexical head h (either stem or word form) the corresponding bit v

c

[m] to 1. Then,

it propagates the information by or-ing the bit vectors in bottom-up order. For each rule

with C on the left side and C

0

as head category on the right side, the following operation

is executed.

v

C

:= v

C

or v

0

C

Once the bit vectors have been computed, the number of possible lexical heads is obtained

by counting the number of bits in each vector.

4.5 Parameter Pooling

We have already discussed, how lemmatisation is used to reduce the number of parameters

of a HPCFG. Another way to achieve a reduction is parameter pooling. Consider the rule

VP_fin_past -> VP_fin_past ADV

which adjoins an adverb

to a verb phrase. The lexical choice distribution P

choice

(advjADV; V P fin past; verb) is

unlikely to di�er very much if we replace VP fin past by VP fin pres or VP inf past.

Therefore, we would like to pool the corresponding distributions into one distribution

P

choice

(advjADV; V P fin pastjV P fin presj:::; verb) in order to get more reliable esti-

mates.

But, what does the parameter pooling mean for the probability model? Remember that

each HPCFG has an equivalent PCFG. The same is true for HPCFGs with parameter

pooling. We just modify step 5 of the grammar transformation in section 2.2 in the following

way:

5 For each pair of categories A and B such that the HPCFG contains a rule A ! :::B:::,

where B is not the head, add a rule hB;A; hi ! hB; jAj; hi to the PCFG for each

lexical head h, where jAj is the pooling class of A.

Further add a rule hB; jAj; hi ! hB; h

0

i for each lexical head h'.

In case of parameters pooling, the lexical choice probability P

choice

(h jC;C

p

; h

p

) is replaced

by P

choice

(h jC

c

; jC

p

j; h

p

), where jC

p

j is the pooling class of category C

p

.
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4.6 Logarithmic Computation

The computation of the inside and outside probabilities poses a numerical problem. For

large sentences, the probability of the whole parse forest may drop below the smallest

numerical value which the computer is able to represent. The usual double-precision oating

point numbers cannot represent numbers smaller than about 10

�308

. Lopar uses therefore

a logarithmic representation of the probabilities.

For the Viterbi algorithm used to extract the most probable parse tree, this means that

the product of probabilities has to be replaced by the sum of logarithmic probabilities.

The implementation of the inside-outside algorithm with logarithmic probabilities is more

di�cult because it also involves summation, which has no equivalent in the logarithmic

domain. LoPar uses the following function to add logarithmic numbers:

add(x; y)

/* x and y are logarithmic numbers */

if (x < y � log(10

�30

))

return y

if (x� log(10

�30

) > y)

return x

base := min(x; y)

return base+ log(exp(x� base) + exp(y � base))
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Chapter 5

Working with LoPar

5.1 Grammar Format

A grammar for LoPar consists of four �les.

� the grammar �le

� the lexicon �le

� the start symbol �le

� the open-class category �le

5.1.1 The Grammar File

The grammar �le contains { little surprise { the grammar. Each line starts with a number

which is interpreted as the rule frequency. Then follows the category on the left side of the

rule and the sequence of daughter categories. One daughter category has to be marked as

the head with an apostrophy (').

Example:

11.3 S NP VP'

30.2 NP DT N'

...

The head marking is optional if neither option -heads nor option -lexmodel is speci�ed.

The frequencies in the grammar �le are mandatory unless option -symbolic is chosen.
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5.1.2 The Lexicon File

Each line of the lexicon �le contains lexical entries for one word form. The line starts with

the word form which may contain blanks. The word form is followed by a tab character

and a sequence of category/frequency pairs. If the parser option -stems was speci�ed, then

the parser expects a stem after the frequency.

The speci�cation of the frequency is mandatory unless option -symbolic is chosen.

Example (with stems):

because of PREP 13.1 because_of

can AUX 113 can NSG 7 can VFIN 0 can VINF 0 can

saw NSG 9 saw VFIN 67 see VFIN 2 saw VINF 0 saw

...

The parser is able to parse without a lexicon if the parser input contains tags.

5.1.3 The Start Symbol File

The start symbol �le contains the list of categories which are allowed at the root of a parse

tree.

Example:

S 1000

NP 10

X 1

All categories are possible start symbols if no start symbol �le is speci�ed.

5.1.4 The Open-Class Categories

In order to parse unrestricted input, the parser must be able to deal with unknown words.

The open-class category �le contains the list of possible unknown word categories. It is then

assumed that the lexicon is complete wrt. closed-class words like prepositions, conjunctions,

determiners, etc.

Example:

N 100

V 1

ADJ 10

ADV 10
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5.1.5 Input File

The parser input must have one-word-per-line format, i.e. each input line corresponds to

one input token. The end of a sentence has to be marked with an empty line. The input may

contain part-of-speech tags after the token and a tab character. If an input line contains

tags, then these are the only tags which will be considered during parsing. Otherwise the

set of possible tags of a token is obtained from the lexicon.

5.2 Symbolic Parsing

LoPar can be used for purely symbolic parsing as the following command illustrates.

lopar grammar text text.parsed

Because no lexicon was speci�ed, the parts of speech of the words must be given in the

input.

In the above example, the parser will print the parse forests for the sentences in text to

the �le text.parsed. Each parse forest contains one line for each constituent in the parse

forest. The line starts with the category name followed by the start and end position and

the list of analyses of the constituent. Each analysis either consists of the word form (in

case of a terminal node) or of the rule number, the sequence of daughter node IDs and a

percent sign. The daughter node ID is the number of the line in which the correponding

constituent is printed (starting at 0). Each line ends with two percent signs and the parse

forest ends with three percent signs.

Example:

NP 0 2 2 1 2 %%

DT 0 1 the %%

NBAR 1 2 4 3 %%

N 1 2 man %%%

It is possible to pipe input into the parser and out of the parser as the following command

shows.

cat text | lopar grammar > text.parsed

5.3 Training

The training of a HPCFG proceeds in three steps.

� unlexicalised training (several iterations on text chunks of growing size)

� lexicalisation (one iteration on the whole training corpus)
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� lexicalised training (several iterations on the whole corpus)

Two iterations of unlexicalised training on a few thousand sentences are usually su�cient

to obtain a good basis for the lexicalisation of the grammar. The following commands

might be used for this purpose:

head -10000 corpus | lopar -in param -t param1

head -10000 corpus | lopar -in param1 -t param1

Option -in parammeans that the grammar is to be read from param.gram, the lexicon from

param.lex, the start categories from param.start and the open-class tags from param.oc.

The -iter N option allows to perform the unlexicalised training in one step. With this

option, the parser �rst trains on N tokens, then on 2N tokens, then on 4N tokens and so on

until the whole corpus has been parsed.

head -20000 corpus | lopar -in param -t param1 -iter 10000

After parsing a multiple of 10,000 tokens and after parsing the whole input corpus, the

parser saves the parameters in �les named param1.gram, param1.lex, param1.start and

param1.oc.

Now, we can lexicalise the grammar with the command:

lopar -in param1 -t param2 -heads corpus

The lexicalised grammar comprises three additional �les, namely param2.lstart with the

lexicalised start frequencies, param2.lgram with the lexicalised grammar rule frequencies

and param2.lchoice with the lexical choice frequencies.

After a few iterations of lexicalised training with the command

lopar -in param2 -t param2 -lexmodel corpus

the training is �nished. Now, we are ready to parse a test corpus with the command:

lopar -in param2 -lexmodel corpus parse-forests

Viterbi parses are obtained with the command:

lopar -in param2 -lexmodel -viterbi corpus parse-trees

5.4 Tagging with LoPar

LoPar computes the most probable sequence of tags (terminal categories) for a sentence

by parsing the sentence and then extracting the tags with the highest estimated frequency.

The corresponding program option is -tagging.
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5.5 Chunking with LoPar

Some applications (e.g. in information retrievel) need low-level constituents like NPs and

PPs rather than full parses. If LoPar is called with the option -chunking <file>, then it

will extract the most probable sequence of chunks. The set of chunk categories is listed in

<file>.

S

NP VP

V NP

Figure 5.1: A partial parse tree. The chunks are encircled.

The most probable chunk sequence of a parse forest P is de�ned as the sequence of non-word

leaf nodes of the partial parse tree T which satis�es the following conditions:

1. T is a subgraph of the parse forest P.

2. The root node of T is also a root node of P.

3. The leaf nodes of T are either words or nodes labelled with a chunk category.

4. T has a higher score S(T ) than any other partial parse tree satisfying 1.) and 2.).

The score S(T ) is de�ned as the sum of the probabilities of all parse trees which match T.

It is e�ciently computed as the (Viterbi) probability of the (partial parse tree) T times the

product of the inside probabilities of all its terminal (chunk) nodes.

The score of the partial parse tree in �g. 5.1 is the probability of the partial tree itself

times the inside probability of the sub-parse forest rooted in the �rst NP times the inside

probability of the sub-parse forest rooted in the second NP.

Problem: The presented algorithm prefers recursive chunks. The reason is the following:

As the size of the partial parse tree T grows, the number of matching complete parse trees

decreases and hence the score of the partial parse tree decreases.

In order to get only non-recursive chunks, we replace the inside probability of a noun chunk

C in the computation of the score by the sum of the probabilities of all subtrees rooted in

C and not containing any chunk category labels.

Unsolved problem: The chunking algorithm does not sum over all analyses containing the

chunk sequence. Consider e.g. the well-known sentence I saw the man on the hill with

the telescope. It is possible to e�ciently compute the probability of all parse trees exactly

containing a particular chunk sequence, but there are exponentially many of them, so that

enumerating them is too costly. A heuristic search strategy which examines only likely

candidate sequences might help but has not been implemented so far.
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