Adapting BERT for Diverse NLP Tasks: Author and Language Identification, News Categorization, and Sentiment Analysis

By Zixuan Cao, Kristina Kuznetsova, Sifan Zhu

+

01. Introduction

NN

Meet ANNs (Artificial Neuron Networks)

ج Why ANNs?

To distinguish between whether it's a cat or a dog in images, linear solution is not good enough. **(Image Classification)**

In fact, in the real world, most problems are complex and involve relationships or patterns that are inherently **non-linear** .

Deep Learning shines through!

 Amazing at solving complicated problems !

 No needs to know anything about the nature of the correct solution. It will automatically figure out for you.

H N Imagine: As a chef at a famous Michelin-star restaurant

To make the best sandwich with butter and jam in the world!

Solution by deep learning:

Keep making more sandwiches until the customer is happy. Use **negative feedback to adjust** your receipt; **stop adjusting** when you get **positive feedback**.

Picture by https://www.stockfood.com/images/11166997-Toast-with-butter-and-strawberry-jam

Forward propagation : Make the sandwich Backwards propagation : Adjust the amounts based on negative feedback by customers

In linguistics: Challenge of Context

01

"I can **bank** on you." \rightarrow Trust

"I am going to the **bank**." \rightarrow A physical location

The role of "bank" in the sentence 02

The relationship of "bank" with other words nearby Self-attention layers in Transformers excel! Analyze the entire sentence focusing on relationships between words to understand context

Encoder? Decoder?

Used in tasks where the input and output are sequences of different lengths

 Encoder: Convert the input data into a meaningful representation so that can be easily understood and utilized by the decoder

• Decoder: Generate the output sequence from the representation provided by encoder

BERT (Bidirectional Encoder Representations From Transformers)

Focuses on the **encoder**. Learns deep contextual relationships within text. Maps every word in a sentence to a high-dimensional space, where similar meanings are close to each other.

Bidirectional?

 \rightarrow Processes the input from left-to-right & right-to-left.

Pre-trained on massive text corpora (Wikipedia and BooksCorpus) using 2 tasks:

- Masked Language Modeling (MLM) \rightarrow Predicting missing words in a sentence
- Next Sentence Prediction (NSP) → Understanding relationships between sentence pairs

Fine-tuned Bert models

Letter Classification (author + language)

News Classification

 \mathbf{O}

Sentiment analysis

fine-tuned on IMDB: Sentiment

Fine-Tuning

+

1

Epoch	Training Loss	Validation Loss	Accuracy	Precision	Recall	F1
1	0.212500	0.309306	0.886000	0.888432	0.886000	0.885634
2	0.336400	0.346524	0.906000	0.906787	0.906000	0.905869
3	0.276700	0.343147	0.915000	0.914996	0.915000	0.914997
		, Z	7			
Epoch	Training Loss	Validation Loss	Accuracy	Precision	Recall	F1
Epoch 1	Training Loss 0.209000	Validation Loss 0.187946	Accuracy 0.928000	Precision 0.929497	Recall 0.928000	F1 0.927944
Epoch 1 2	Training Loss 0.209000 0.136100	Validation Loss 0.187946 0.184067	Accuracy 0.928000 0.936800	Precision 0.929497 0.936815	Recall 0.928000 0.936800	F1 0.927944 0.936799

Fine-Tuning

Error Analysis

Hyperparameter Tuning

Threshold Adjustment

- Ambiguous or mixed sentiment in the text.
- Presence of sarcasm or idiomatic expressions that might confuse the model.

- Optimized the learning rate, batch size, and other hyperparameters to reduce misclassifications.
- Experimented with different thresholds

Confusion Matrix

Balanced Performance:

Both positive and negative classes have identical precision, recall, and F1-scores.

• Few Misclassifications:

The false positives (289) and false negatives (321) are relatively small compared to the correctly classified samples.

• High Accuracy:

A 94% accuracy demonstrates that the fine-tuned BERT model is effective for the sentiment analysis task.

ROC Curve

A curve that approaches the top-left corner indicates better performance, as it signifies **high TPR** (correctly identifying positives) and **low FPR** (minimizing false alarms).

• High Discrimination Power:

With an AUC of 0.94, our model performs exceptionally well at distinguishing between classes, even when accounting for different thresholds.

• Balanced Trade-off:

The ROC curve suggests that the model maintains a good trade-off between recall and precision.

How well does this model perform outside its comfort zone?

Evaluation on Amazon Polarity Dataset

What It Tests:

Goal:

*

- ★ How well a model can handle new, unseen data from a different domain or dataset.
- ★ The ability to transfer
 learned patterns to
 other contexts.

★ Ensures the model is not overfitting to the training dataset but instead learns generalizable Evaluate if the model maintains performance (e.g., accuracy, precision, recall) when applied to different datasets.

Confusion Matrix - 900 - 800 Negative 54 942 - 700 - 600 **True Labels** - 500 - 400 POSITIVE - 300 183 - 200 - 100 Negative Sitive Predicted Labels

The model retains high performance on an OOD dataset, Lachieving **88% accuracy**, highlighting its robustness.

Ever wanted to know why a model made a certain prediction?

Human-readable explanations with LIME

Interpretability of Complex Models

Understanding Specific Predictions

Model-Agnostic

LIME helps break down predictions of ML models into simpler, understandable components. Unlike traditional methods that try to explain the global behavior of a model, LIME focuses on explaining **individual predictions**.

LIME can be applied to any machine learning model, regardless of the underlying architecture.

*LIME shows exactly which features influenced its decision.

Greater Interpretability + Context Ambiguity

Human-readable explanations with LIME

The model treats every token in the input as relevant to the prediction. Some words have both **positive and negative contributions** This highlights how a word's meaning can change based on its context within the sentence.

The model is considering their contextual interdependencies to derive sentiment.

Attention visualization

- The attention mechanism calculates the importance (or weight) of each token in relation to every other token in the sequence.
- This helps to:
 - Understand Token Contributions
 - By Explainability
 - Fine-Tuning Insight

4

03. Author classification & Language classification

Process

Author classification:

Fine-tune the multilingual version of BERT (**mBERT**) on the dataset & Evaluate

Epoch	Training Loss	Validation Loss	Accuracy	F1	Precision	Recall
1	0.088600	0.153238	0.950420	0.887025	0.891602	0.887395
2	0.080800	0.124608	0.966400	0.927359	0.925595	0.929804
3	0.065900	0.134569	0.969678	0.934034	0.934995	0.935238

The model improves steadily across epochs.

Want to know more about the model? \rightarrow **Probing**

Probing

To analyze and interpret the representations in hidden states or embeddings encode about specific linguistic properties or features in the data.

In the author classification task: How well the representations from a specific BERT layer encode information on decision making between classes

Extract representations from a single layer → To analyze how much information is encoded in the last hidden layer (classification task)

Train a probing classifier to predict the corresponding labels

Probing Classifier Accuracy: 0.9709

	precision	recall	f1-score	support
Franz Kafka	0.96	0.95	0.96	280
Friedrich Schiller	0.83	0.86	0.85	266
Henrik Ibsen	1.00	0.99	1.00	897
James Joyce	0.97	0.99	0.98	682
Johann Wolfgang von Goethe	0.82	0.81	0.81	228
Virginia Woolf	1.00	0.99	0.99	1901
Wilhelm Busch	0.98	0.98	0.98	627
accuracy			0.97	4881
macro avg	0.94	0.94	0.94	4881
weighted avg	0.97	0.97	0.97	4881

Autho

To explain the predictions of our model

Attention Mechanism

A heatmap visualization of the attention weights in the last layer of a pre-trained BERT model. The heatmap shows how tokens in the input text attend to each other.

Attention Mechanism

Many tokens (e.g., ##kul, muligt) attend most strongly to themselves, as seen in the brighter diagonal.

Also, they exhibit more consistent attention to a range of other tokens \rightarrow Importance in the broader sentence meaning

Some tokens (e.g., Bank) distribute attention more broadly to other tokens, as seen by higher intensity off-diagonal weights.

Problems in the language classification task

support	fl-score	recall	recision	P
844	1.00	1.80	1.00	da
144	1.00	1.80	1.00	de
2515	1.88	1.80	1.00	en
31	0.97	1.80	8.95	fr
32	0.97	8.97	8.97	it
4883	1.88			accuracy
4883	0.99	8.99	8.98	macro avg
4883	1.88	1.80	1.00	weighted avg

7 classes in training dataset

Only 5 in evaluation dataset

- Incomplete picture of the model's performance across all 7 classes
- Imbalanced dataset

 \bigcirc

News Category Classification

by Zixuan

Know your Data

W

Is the dataset balanced?

What are the features?

+

Unbalanced as a Whole

The whole dataset is unfortunately unbalanced.

Balanced in the Train Data

Generally, we can apply some sampling technique to balance the train data as possible, as done in the given one.

The Features to Consider

The Pet Collective, Contributor, Your daily source for cute, funny, informative, and heartwarmi... **(ENVIRONMENT)**

Shahir ShahidSaless, Contributor. An Iranian-Canadian political analyst. He has extensively writ... (POLITICS)

Sister Jenna, Contributor, Award-winning Spiritual Mentor, Author, Host of the Popular Am... (WELLNESS)

Links can Contain Keywords

https://www.huffingtonpost.com/entry/*justin-trudeau-state-di nner-climate-change* _us_56e1805be4b0b25c9180e224 (POLITICS)

Combine the Features, but

Which

How

Wait, that was too much!

It is very expensive to train a full model for each possibility.

Let's experiment them on a small dataset.

Some Insights from Experiments +

In a word, the [SEP] with all features **simply wins** .

*Not all lines are displayed.

Time to scale up.

We will choose [SEP]-all and HTML-style-all to train a model on the full dataset.

+

	Accuracy	F1-Score	Precision	Recall
[SEP]-All	0.827	0.823	0.823	0.824
HTML-Style -All	0.822	0.817	0.817	0.818

The performance of [SEP]-Full slightly exceeds the HTML-Style's, as expected on the smaller dataset. (3 epochs)

Where the model succeeds and fails, Why?

We will use the probing technique SHAP.

It will generate values indicating **how much a token contributes** to the decision.

+

True: TRAVEL

Easy and correct.

True: DIVORCE

Sharp and correct.

It recognized the comedian.

We can discuss whether remembering the author name is a good thing though.

True: IMPACT

and cases where you just don't know why it's so confident and correct...

* remember we tried Regex and it was counter-effective.

Possible Reasons for Mistakes

Overlapping in categories

e.g. COMEDY vs. ENTERTAINMENT, CULTURE & ARTS vs. TRAVEL

* In some cases, the information is not sufficient to disambiguate these confusion pairs.

Possible Reasons for Mistakes

The model failed to grasp the focus of a text contextually, when there were multiple representative words.

Pred: ENVIRONMENT

...[SEP]https://www.huffingtonpost.com/entry/will-we-continue-to-make-_b_5510953.html[SEP]Of course, in Washington, following the money is always a sound principle for explaining repetition of failed policy.[SEP]2014-06-20 00:00:00[SEP]

True: POLITICS

Will We Continue to Make the Same Mistakes on EnergyPolicy?[SEP] Cliff Schecter, ContributorBest-selling Author, Public Relations Consultant, Daily Beast ...[SEP]https://www.huffingtonpost.com/entry/will-we-continue-to-make-_b_5510953.html[SEP]Of course, in Washington, following the money is always a sound principle for explaining repetition of failed policy.[SEP]2014-06-20 00:00:00[SEP]

Possible Reasons for Mistakes

The model oversimplified some categories, instead of understanding like a human.

This happened a lot in the pair.

DIVORCE vs. WEDDINGS

settling_us_5b9c2b0ae4b03a1dcc7cca17[SEP]Because we're poorly educated about transitions in our culture, we mistake the fear for doubt and thus begins a scary domino effect of believing that we're in the wrong relationship. The message is: If you're doubting, you must be settling.[SEP]2012-08-23 00:00:00[SEP]

Negative words don't necessarily mean we want to divorce.

inputs

Using Marriage As A Weapon Against Poverty Hurts Women[SEP] Kristin Tennant, Contributor Kristin Tennant is a divorced-Christian-liberal-remarried-Midw...[SEP]https://www.huffingtonpost.com/entry/using-marriage-as-a-weapo_us_5b9c483ee4b03a1dcc7d8cbb[SEP]My general stance is pretty basic: Don't take marriage lightly. It also seems like a fairly non-controversial stance -- one that anyone who truly honors marriage and hates divorce could get behind, whatever their political or religious leaning.[SEP]2012-09-14 00:00:00[SEP]

hates + divorce = DIVORCE?

It behaved like a naive bag of words :c

inputs

Trump May Have Shut Down National Park Climate Tweets, But The Internet Won't Let It Die[SEP]Steven Hoffer[SEP]https://www.huffingtonpost.com/entry/alternativenational-park-twitter_us_5888c087e4b0b481c76c2820[SEP]"You can take our official twitter, but you'll never take our free time!"[SEP]2017-01-25 00:00:00

Similarly...

0.00287926
0.1
0.2
0.219117
0.3

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1<

3 Signs You Should Call Off The Wedding[SEP] [SEP]https://www.huffingtonpost.com/entry/runaway-bride_us_5b9dadf4e4b03a1dcc8b5b9b[SEP]3. Inflexible attitude. A recent CNN article reminds couples knee-deep in wedding planning, "it's all champagne toasts and[SEP]2013-12-02 00:00:00[SEP]

Just because we wrote a wedding there doesn't mean we are talking about it.

Still Something Interesting?

Yes, the DATES were sometimes contributing to the decision.

This means they are discriminative.

Date

Category Index: Name	
33: WORLD	
32: WOMEN	
31: WELLNESS	
30: WEIRD NEWS	
29: WEDDINGS	+ 🤛
28: TRAVEL	•
27: TECH	
26: TASTE	
25: STYLE & BEAUTY	
24: STYLE	
23: SPORTS	
22: SCIENCE	
21: RELIGION	Thoro are contain
20: QUEER VOICES	There are certain
19: POLITICS	
18: PARENTING	1
17: MONEY	regularities" in the
16: MEDIA	
15: IMPACT	
14: HOME & LIVING	diatribution of datas
13: HEALTHY LIVING	aisinpulion of dales.
12: GOOD NEWS	
11: FIFTY	
I0: ENVIRONMENT	
9: ENTERTAINMENT	and the second
8: EDUCATION	hut these can be
7: DIVORCE	
6: CULTURE & ARTS	
5: CRIME	higgs in the
4: COMEDY	plases in the
3: COLLEGE	
2: BUSINESS	
1: BLACK VOICES	dataset
0: ARTS & CULTURE	

* I realized it afterwards

Are we cheating or not?

The regularity of dates remain in both train_data and eval_data, but there is a high chance that it cannot be generalized.

In order to be fair, I trained another model without dates on the full dataset, expecting it to be much worse...

Well, it's not that bad!

	Accuracy	F1-Score	Precision	Recall
[SEP]-no -dates	0.818	0.814	0.814	0.815

Considering this is only trained for 2 epochs, it's not worse than with dates anyway :D

It seems the model can still catch enough signals to make most decisions right.

- What we know about BERT in this task

Generally speaking, BERT is: versatile and contextually powerful, but expensive to train.

We basically confirmed these, but in this task, it did not behave very contextually in more difficult tasks either.

+ What to do next?

Is it possible that we just haven't unleashed the full power of BERT?

Try to cherry-pick those difficult samples and specifically finetune BERT. Also try to do it without links given that sometimes the model relies on the identifier.

Project Report: Time, Cost, and Outcome

0

0

Allen

.....

111

1110

.....

111.

2.6 kg CO₂

The total carbon footprint generated throughout the project's lifecycle.

0

 \bigcirc

Environmental impact

Transportation

- Taking a short domestic flight of about 15–20 minutes. (Flights emit around 133 g CO₂ per passenger per kilometer.)
- Driving a typical gasoline-powered car for about **10 kilometers (6 miles)**.

Waste Disposal

Household Activitieskness 🕅

- Using a **microwave oven** continuously for **3 hours**.
- Leaving an LED light bulb (10W) on for 23 days straight.

Digital Activities

 Streaming 10 hours of high-definition video

Project Resource Summary

\$22

~120h

Approximately **120 hours** were spent on parameter tuning and testing different configurations to enhance the model's performance.

Time

The **total cost** of GPU time on Google Colab was 22\$

2563.1MB

The data expanded significantly, increasing by a factor of 22.93, from **111.8MB to 2563.1MB**.

Computational Costs Data growth
Key Takeaways

1. Explored BERT's versatility across three tasks:

- Sentiment Analysis.
- Author and Language Detection.
- News Categorization.
- 2. Technical Insights:
 - Identified strengths and limitations of BERT across tasks.
 - Applied advanced evaluation techniques:

Confusion Matrices – for performance analysis.

SHAP & LIME – for interpretability.

Attention Visualization & Probing – to understand decision-making.

3. Long-term Vision

- Highlighted the importance of responsible and sustainable AI development.

Thanks!

+

6

000

