CaMEL: Case Marker Extraction without Labels

Leonie Weissweiler, Valentin Hofmann, Masoud Jalili Sabet, Hinrich Schütze
Deep Cases

- Case marks the role of a Noun Phrase (NP) in a given sentence
- Deep Cases (Filmore, 1968) are language-universal and more fine grained

<table>
<thead>
<tr>
<th>Deep Case</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominative</td>
<td>The subject of the sentence</td>
<td>He is the Messiah!</td>
</tr>
<tr>
<td>Genitive</td>
<td>An entity that possesses another entity</td>
<td>Are you the Judean People’s Front?</td>
</tr>
<tr>
<td>Recipient</td>
<td>A sentient destination</td>
<td>I gave the gourd to Brian.</td>
</tr>
<tr>
<td>Accusative</td>
<td>The direct object of the sentence</td>
<td>Consider the lilies.</td>
</tr>
<tr>
<td>Locative</td>
<td>The spatial or temporal position of an entity</td>
<td>They haggle in the market.</td>
</tr>
<tr>
<td>Instrumental</td>
<td>The means by which an activity is carried out</td>
<td>The graffiti was written by hand.</td>
</tr>
</tbody>
</table>
Case markers, case systems and deep cases are not mapped one-to-one:

- **Case polysemy**: one case, several deep cases
- **Case homonymy**: several cases, one marker
- **Case synonymy**: one case, several markers

→ **Key idea**: we can gain information about the deep case of an NP involving –ibus in a given context by looking at the case markers in its Russian translation.
Contributions

• We introduce **CaMEL: Case Marker Extraction without Labels 🐫**, the task of extracting the case markers for unannotated parallel text

• We propose a simple method that is efficient, doesn’t require training, and generalises well to new languages

• We automatically construct a silver standard based on UniMorph data and evaluate our method, achieving **45%** average F1 over 19 languages

• We demonstrate two first ways of using the extracted case markers
Our Method

Parallel Corpus with alignments

NP Annotation

NP Projection

Candidate Set Creation

Frequency Filtering

Inside/Outside Filtering

Restriction to Word Endings
NP Annotation and Projection

I am the fine shepherd; the fine shepherd surrenders his soul on behalf of the sheep.
Ich bin der vortreffliche Hirte; der vortreffliche Hirte gibt seine Seele zugunsten der Schafe hin.

I am the good shepherd; the good shepherd sacrifices his life for the sheep.
Ich bin der vortreffliche Hirte; der vortreffliche Hirte gibt seine Seele zugunsten der Schafe hin.
Candidate Set Creation

- We now have a frequency list of words inside of NPs and outside of NPs for each language.
- We move words with a higher relative frequency inside of NP to I_l and all others to O_l.
- From I_l, we generate our candidate set, with all character n-grams from all words in I_l, e.g. *ovibus* ‘sheep’ \rightarrow ovi, $ibus$, but also $ovibus$ and i etc.
Filtering of the Candidate Set

• Frequency Filtering: we filter out all candidates with a frequency lower than a threshold
• Inside/Outside Filtering
 • we conduct a Fisher’s Exact Test on the frequencies of a candidate inside and outside of NPs
 • Question: does this candidate occur more frequently inside than outside of NPs?
 • → use the resulting p-value and odds ratio for filtering
• Restriction to word endings
Silver Standard

- Automatically created from paradigms in UniMorph
- Covers 19 languages
- Emphasis on precision rather than recall

<table>
<thead>
<tr>
<th>Nominative Singular</th>
<th>inflected forms</th>
<th>unused information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abfl</td>
<td>ug</td>
<td>N NOM SG</td>
</tr>
<tr>
<td>Abfl</td>
<td>ug</td>
<td>N GEN SG</td>
</tr>
<tr>
<td>Abfl</td>
<td>ug</td>
<td>N DAT SG</td>
</tr>
<tr>
<td>Abfl</td>
<td>üge</td>
<td>N ACC SG</td>
</tr>
<tr>
<td>Abfl</td>
<td>üge</td>
<td>N NOM PL</td>
</tr>
<tr>
<td>Abfl</td>
<td>ügen</td>
<td>N GEN PL</td>
</tr>
<tr>
<td>Abfl</td>
<td>üge</td>
<td>N DAT PL</td>
</tr>
<tr>
<td>Abfl</td>
<td>üge</td>
<td>N ACC PL</td>
</tr>
</tbody>
</table>
We achieve 54% average precision, 41% average recall and 45% average F1 over all 19 languages

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Algorithm Only</th>
<th>Silver Standard Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>у, я, ом, ого, о, в, ой, и, ми, ам, ей, ю, ы, ов, ых, а, м, х, ами</td>
<td>ий, ные, ое, ение, ии, го, йй, ка, ые, к, ки, ия, ние, ы, ния, ие</td>
<td>ыми, ах, ев, ым, ому, ыя, н, ьях, ями, ям, е, ях, ьев, ем, ым, ья-ми</td>
</tr>
<tr>
<td>u, ja, om, ogo, o, v, oj, i, mi, am, ej, ju, y, ov, yx, a, m, x, ami</td>
<td>ij, nye, oe, enie, ii, go, yj, ka, ye, k, ki, ija, nie, j, nija, ie</td>
<td>ymi, ax, ev, 'jam, omu, 'ja, n, 'jax, jami, jam, e, jax, 'ev, em, um, 'jami</td>
</tr>
</tbody>
</table>
Manual Qualitative Evaluation

- *domibus* – дворцах/dvorcax – **Location**
 → ‘in the houses’

- *operibus bonis* – добрыми делами/dobrymi delami – **Instrumental**
 → ‘through the good deeds’

- *patribus* – предкам/predkam – **Recipient**
 → ‘for/to the parents’
Semi-Automated Qualitative Evaluation

• Generate NP-word co-ocurrence matrix over the NP vocabulary of all languages
• Reduce with t-SNE
• Here: NPs with Latin –ibus, coloured by occurrence of Polish ach$ (LOC) and –om$ (DAT)
• → we can cluster NPs semantically by their deep case
Conclusion

We have

• introduced the new task of **Case Marker Extraction without Labels CaMEL**
• compiled an automatically created silver standard for this task covering 19 languages
• presented a simple and efficient method leveraging alignments and achieving 45% average F1
• demonstrated two ways in which the retrieved case markers can be used to investigate deep case
Thank you for listening!

Leonie Weissweiler
Oettingenstraße 67 · 80538 Munich · Germany
weissweiler@cis.lmu.de · www.cis.lmu.de/~weissweiler